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1. INTRODUCTION 

Nondestructive evaluation (NDE) is a very broad interdisciplinary field that is 

primarily concerned with assessing the integrity of a part or device without destroying 

its functionality. The NDE field uses a wide range of theories from different areas 

such as electromagnetics, physics and fracture mechanics. In most cases the goal 

is to inspect the part for defects or flaws that will affect the performance. Because 

the inspection is nondestructive, it can be used to extend the life of existing devices 

in use by indicating areas for repair or by certifying them serviceable. One of the 

most important applications of NDE is commercial aircraft inspection and reliability 

assessment. The airline companies are mandated by the FAA to inspect critical 

portions of the aircraft at specified time intervals. Through this procedure, airplanes 

generally remain safe and their operational lifetime is extended, often well beyond 

their designed lifetimes. Recently, the fleld of NDE has become more visible after 

several aircraft disasters attributed to structural failures either in the air surfaces or 

engine parts. This has placed pressure on the industries to devote more attention 

to their NDE activities in terms of better inspection and more inspection. Better 

inspection can be accomplished in two ways. First, research devoted to improved 

NDE methods and procedures are yielding more sensitive, accurate and predictable 

results. This is an ongoing task being addressed at many industrial companies as well 
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as centers of research in NDE. Second, a relatively new concept called "Life Cycle 

Engineering'' is being initiated to design NDE inspectability into devices at the design 

stage (Burte and Chimenti 1987). This concept requires the involvement of NDE 

scientists and engineers in the design process. It is a naturally sound approach given 

that one of the major difficulties in NDE today is "inspectability". Many devices are 

not inspectable in certain areas simply because of physical limitations of the NDE 

technique being used. Sometimes a combination of many NDE techniques will be 

able to fully inspect a part, but not always. A logical time to consider this problem 

is at the design stage. 

There are seven major areas of inspection in NDE (Halmshaw 1987). These 

are visual, radiological, ultrasonic, magnetic, electromagnetic, penetrant, acoustic 

emission, thermographic and holographic. 

Visual inspection involves looking at the surface structure of a part for obvious 

signs of damage or fatigue such as surface cracking, deformations or corrosion. 

Radiological inspection uses penetrating radiation (e.g., x-rays, neutrons) to 

create a projection of the inside of a part onto a suitable detector. Flaws within 

the part appear as a change in intensity of the detected x-ray beam caused by the 

variation in material density within the part (Halmshaw 1982). 

Ultrasonic inspection utilizes the interaction (propagation or reflection) of acous­

tic waves with flaws within a part to characterize or detect them. Piezoelectric trans­

ducers are generally used to generate and detect the acoustic waves. 

Magnetic inspection involves detecting defects within ferromagnetic materials by 

detecting changes in the magnetic properties of the material where the flaw exists. 

The changes are detected by the presence of a leakage field produced by the disconti­
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nuity in the material where the flaw is located. This field can be detected by clusters 

of magnetic particles or powder that accumulate around the flaw locale. 

Electromagnetic inspection uses eddy current probes to induce eddy currents in 

the material on the surface and at shallow depths. Flaws are detected as a change 

of impedance seen by the probe as the electromagnetic coupling between the probe 

and part changes when the probe nears a crack or other defect. 

Penetrant inspection is used for detecting surface defects on a material. A liquid 

dye is spread over a nonabsorbing part and then is wiped clean. The dye penetrates 

into the surface defects and is not removed in the cleaning process. The dye, and 

thus the defects, can then be detected using a developer to make the dye visible. The 

dyed areas can also be detected using paper brought into contact with the part. 

Acoustic emission uses elastic radiation caused by changes of stress within a part 

to detect the presence of flaws (Wadley et al. 1984). The change in stress is caused 

by the formation or propagation of defects within the material. 

Thermographic inspection utilizes the thermal properties of a material to detect 

flaws or anomalies. This can be done by applying heat to one side of the object and 

image the heat diffused through to the other side with some thermal sensor such as 

an infrared camera. The spatial distribution on the other side at any given time will 

show inhomogeneities within the material as well as spatial variations in the material 

diffusivity. 

Holographic inspection includes optical, acoustic and neutron modalities. In 

optical holography, very small deformations of a part will create interference fringes 

when superimposed with a hologram of a nominal part. In acoustic holography, 

defects are located and sized by reconstructing a profile of the elastic field intensity 
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within a part. In neutron holography, a hologram of the part is formed by placing it 

in a neutron beam with a Fresnel zone plate between the part and the film detector. 

The plate serves as an encoding device and is a séries of concentric circles which 

alternatively absorb and transmit neutrons (Halmshaw 1987). This hologram can 

then be used to reconstruct the object in a plane in terms of its neutron absorption 

characteristic. 

Each of these techniques has its advantages and disadvantages over the others 

depending on the application. For example, in steel castings of railroad switches, the 

grûn structure of the steel alloy is too large to allow the use of ultrasonic inspection, 

while x-ray inspection works well using a high power radioisotope. In other situa­

tions ultrasonic inspection may be preferred over nonmagnification x-ray inspection 

because of the ability to detect smaller defects. There are many tradeoffs involved in 

selecting the inspection mode. These tradeoffs include signal-to-noise ratio of poten­

tial flaws, spatial resolution limits, physical inspectability limitations, time required 

for inspection and cost. 

The type of inspection addressed in this dissertation uses x-ray radiography. One 

of the major benefits of radiography is that it can produce a two dimensional image of 

the inside of the part under test. Images are relatively easy to interpret as there is a 

direct correspondence between what we see in the radiographic image and what exists 

inside the part. One of the problems with interpretation, however, is that the depth 

information about the object is lost in the x-ray image. The x-ray intensity arriving 

at a detector after passing through an object is determined by the x-ray photon 

interaction with the object material along the line of sight between the source and 

and the detector position. There are also problems which complicate the quantitative 
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interpretation of detector signals (x-ray intensities) including geometric unsharpness, 

scattering, polychromatic effects and detector response. Geometric unsharpness is 

caused by the finite extent of the x-ray source. Thus, for any position on an x-

ray detector, there is an intensity contribution from all points on the x-ray source. 

This has the effect of blurring out the projection of features on the detector. Figure 

1.1 illustrates the unsharpness caused by a source shaped like a short line segment. 

Notice the radiation emanating from each end of the source blurs out the edge of the 

test object. 

Microfocus x-ray sources have extremely small sizes (down to 10 /x m) and min­

imize the effects of geometric unsharpness unless extremely large magnifications are 

used. Magnification is accomplished by placing the part under test closer to the x-ray 

source where its features diverge to larger proportions on the x-ray detector. The 

magnification value is given by 

m = —, (1.1) 

where D is the distance separating the x-ray source and detector, and x is the distance 

between the object and the source. 

Scattered radiation is the radiation reaching the detector that has changed di­

rection and energy after interacting with the material or other structures near the 

detector. If the scattered photons reach the detector, they cause an image degrada­

tion because they have not necessarily interacted with the material along the path 

from the source to the detector position of interest. Not all photons are scattered, 

however, and it is the fraction that are scattered that reduces the photon flux from 

the incident photon beam to contribute to an effective absorption of x-ray energy. 

Scattering is a random event that is very difficult to model or simulate except through 
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Figure 1.1: Illustration of geometric unsharpness cause by a line source 
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Monte-Carlo procedures. There are experimental techniques, however, that can min­

imize the contribution of scattering (Halmshaw 1982). Another major contributor to 

the absorption of the x-ray energy is photoelectric absorption. Photoelectric absorp­

tion occurs when the incoming x-ray photon is absorbed by an atom which resulting 

in the emission of an electron from the shell of the atom. This type of absorption is 

only significant for materials of low atomic number and for x-ray energies less than 

100 keV. 

The polychromatic nature of the x-ray radiation also complicates the quantita­

tive interpretation of x-ray intensities at the detector. All x-ray machines generate 

a spectrum of x-ray energies which is broadband. These energies represent the char­

acteristic radiation energies associated with the target material in the x-ray tube as 

well as Bremsstrahlung generated by the deceleration of electrons upon hitting the 

target. This broadband radiation spectrum causes difficulty because the absorption 

characteristics of all materials are energy dependent. In addition, the intensity of the 

generated radiation varies with energy. 

Finally, all signals, or x-ray intensities must pass through a detector response 

function. In the case of x-ray film, models exist that relate the x-ray flux and the 

exposure time to optical film density, depending on certain physical film properties. 

Other detectors include scintillation detectors which count photons in a pencil beam 

and intensifying tubes which convert the x-ray intensity to light on a phosphor plane. 

The spatial distribution of light can then be digitized by a television camera and a 

digitizing board so that quantitative information about the image can be obtained. 

These detectors have an inherent efficiency which is also energy dependent. With 

scintillation detectors, the x-ray intensity or flux can be directly measured through 
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photon counts, but with intensifying tubes the relation between x-ray intensity and 

phosphor light intensity (as well as the digitized output from the television camera) is 

very complicated and calibration curves are used to emperically deduce it (Bernardi 

1991). 

We must be aware of the factors above which influence the image formation pro­

cess as well as the x-ray physics to quantitatively interpret results and to understand 

the limitations of radiographic inspection. 

The limitations of x-ray radiography create a problem with inspectability and 

flaw detectability. One of these limitations is the thickness and type of material 

under test. In many situations, it is impossible for the radiation to penetrate through 

certain materials. Examples of these materials are thick steel castings or materials 

of high atomic number in which x-rays from a microfocus source (< 200 keV energy) 

cannot penetrate. Another limitation occurs when variations of material thickness 

create a situation in which part of the image is optimally exposed while other parts 

are underexposed or overexposed. Figure 1.2 illustrates a part shape in which the 

geometry would cause sub-optimal exposure over some portion of a film detector. 

A related limitation is the dynamic range associated with the detector for any 

one choice of x-ray voltage and current. For film, the low end of the range is limited 

by a background optical density, called fog, and the high end is limited by the number 

of activated silver halide grains in the film emulsion. When all of the grains have been 

activated, any increase in exposure does not affect the film optical density. To utilize 

the full dynamic range of film can be difficult. That is, when creating a optimal 

exposure at areas of thin material, the rest of the part having thicker material can 

cause underexposure in which no x-rays pass through. Conversely, if an optimal 
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region exposure region exposure region 

x-ray film 

Figure 1.2: Illustration of part geometry causing underexposure and overexposure 
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exposure is set up for a region of thick material, those regions of thin material will 

be overexposed and the film will be saturated. Scintillation detectors effectively have 

an infinite dynamic range. The reason for this is they can continue to count photons 

indefinitely. Thus, sufficiently high x-ray voltage and current are used to create a high 

signal to noise ratio in the thick regions and the comparatively high x-ray intensity 

in the thin regions can be measured simply as a higher number of photon counts. 

Other limitations include resolution and sensitivity of the detector. These limi­

tations can be overcome by a variety of techniques such as re-orienting the part under 

test, taking several exposures at different energy levels, changing the beam proper­

ties, and using different types of x-ray detectors. There are applications, however, 

in which the limitations are very difficult to overcome. All of these limitations play 

an important role in quantitative flaw measurement. In order to critically assess 

the integrity of a part, we often need to know the sizes of the flaws as well as their 

locations. The limitations of inspectability create a major problem for this type of 

work. 

There are two basic approaches to quantitative flaw measurement in x-ray in­

spection. The first approach involves the reconstruction of the complete structure 

as well as the material composition of the part under test. This generally involves 

the determination of all internal and external material boundaries and the spatial 

distribution of the material x-ray attenuation coefficient. In this manner, material 

deformations as well as internal flaws can be detected by changes in the reconstructed 

attenuation coefficient distribution. 

The most common way of performing reconstruction is through computed to­
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mography (GT). Computed tomography is a technique used for reconstructing cross 

sections of the x-ray attenuation coefficient from multiple projections around the ob­

ject (Kak and Slaney 1988). GT reconstruction is based on the Radon transform 

(Deans 1983) and the central slice theorem. The central slice theorem states that 

the 1-D Fourier transform of the parallel projection of an object is equal to a slice 

of the 2-D Fourier transform of the object. This is illustrated pictorially in Fig. 1.3. 

The parallel projection is obtained from parallel x-rays along the line detector having 

orientation 9. The object in the spatial domain is a 2-D slice of the spatial x-ray 

attenuation function of the object. 

The spatial attenuation coefficient function is reconstructed by building up points 

in the frequency domain from projections at many angles followed by an inverse 2-

D Fourier transform. Different sections of the object can then be reconstructed and 

stacked to reconstruct the full 3-D spatial attenuation coefficient function. Obviously 

this requires an enormous amount of data since many projections are required for 

each cross section to guarantee complete sampling of the object. Good sampling 

requires adequate detector resolution as well as a small step size of $. In industrial 

GT systems, resolution down to 0.1 mm can be obtained for parallel beam scans and 

0.05 mm in magnification (cone-beam or fan-beam) scans (Feldcamp et al. 1988). 

There is a large body of literature on GT in both the medical and NDE fields 

in which alternative reconstruction approaches are presented for various acquisition 

geometries. These include Algebraic reconstruction in which the object is represented 

by a discrete matrix of attenuation coefficient values and a system of algebraic equa­

tions is solved to determine the values (Andersen 1989); fan-beam reconstruction 

where the x-ray beam spreads out like a fan from a point source (Peng and Stark 
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Fourier Transform 

spatial domain frequency domain 

Figure 1.3: Central slice used in CT reconstruction (after Kak and Slaney 1988) 
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1987); and cone beam reconstruction in which the 3-D attenuation coefficient function 

is reconstructed directly from angular scans of a cone beam x-ray source (Nalcioglu 

and Cho 1978; Denton et al. 1979). In a cone beam scan, the entire 2-D projection 

of the 3-D object is used in the reconstruction as opposed to the 1-D projection of a 

2-D slice. 

In standard CT reconstruction the object must be inspectable from all angles. 

As mentioned previously this is often not possible due to geometric considerations. 

In some cases the object under test is. too large or awkward to be used in a CT 

reconstruction scheme. This results in an incomplete sampling of the frequency do­

main and the introduction of unwanted artifacts when performing the reconstruction. 

There are many techniques available which attempt to estimate the missing data or 

minimize the artifacts in the reconstructed image. The more notable techniques are 

cited in Chapter 3. There are also situations in which only a few (two or three) 

projections are available and no amount of estimation to correct for the missing data 

is sufficient to warrant an attempt at CT reconstruction. 

In industrial CT there are other problems associated with obtaining quantita­

tive information about the part under inspection. The problems are similar to those 

discussed earlier in generic radiography. They include energy dependent attentuation 

characteristics of materials, broadband x-ray energy spectrum, x-ray beam hardening, 

scattering, and equipment stability (Vannier and Ellingson 1988). Beam hardening 

refers to the change in the energy spectrum of the x-ray beam as it passes through 

an object. Beam hardening artifacts can be reduced by techniques that linearize the 

attenuation vs. thickness curve (Kak and Slaney 1988) or by dual energy measure­

ment techniques (Vannier and Ellingson 1988). The problems of energy dependent 
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attenuation process and broadband spectrum have been addressed by McCulIough 

et al. (1974, 1975) who introduced the concept of effective energy (Kak and Slaney 

1988). Effective energy is the monochromatic energy that will attenuate the same 

amount as the broadband energy measured by the CT scanner. 

The second approach to quantitative flaw measurement is modeling. In this 

approach, a geometric model is assumed for the flaw of interest and the flaw is 

is described by the model parameters rather than the true flaw distribution. The 

model parameters arc estimated by fitting the analytical projection of the model to 

the measured projections of the flaw. The model can be a geometric figure such 

as an ellipsoid, box, polygon, or piecewise linear curve. In these cases, the model 

parameters are the geometric properties defining the figure (e.g., axes lengths, side 

lengths, centroid location). This approach has several advantages. First, the number 

of projections required to estimate the model parameters is very small compared to 

CT. The reason for this is the amount of information being computed is much less. 

A related advantage is the reduction in computation time required to compute the 

model parameters. Another advantage is the simplified data acquisition requirements. 

This is due to the fact that only a few projections are required to perform the model 

parameter estimation and in many cases, the object under test requires inspection 

from one side only. 

This type of flaw measurement is not a new idea as flaw models such as EDM 

(electrical discharge machining) notches have been used in eddy current inspection 

(Sabbagh and Sabbagh 1983, 1984) and ellipsoids have been used for volumetric 

flaw sizing in ultrasonic inspection (Schmerr et al. 1988). However, there has not 

been much work in model-based flaw reconstruction using x-ray radiography. One 



www.manaraa.com

16 

approach has been to assume a convex hull model for a flaw distribution and to 

reconstruct the convex hull using an iterative CT approach at restricted angles (Tarn 

1989). Another approach has been to reconstruct polyhedra shapes from three views 

(Hung et al. 1989). This approach uses edge and corner information from three views 

to reconstruct a polyhedron model of an object. It is specifically geared towards 

photographic scene-type images, but could be applied to x-ray images. 

In this project, a technique, specifically geared towards NDE x-ray radiography 

has been developed that uses a piecewise linear curve model for crack-like flaws and 

an ellipsoidal model for volumetric flaws (Wallingford and Basart 1988, 1989a, 1989b, 

1990). In the piecewise linear curve model, the endpoints of the linear segments that 

model the crack are reconstructed from two or more stereographic or rotational pro­

jections. In the ellipsoidal model, the model parameters are also reconstructed from 

at least two stereographic projections. This dissertation deals with the theoretical 

development of the flaw models, the reconstruction algorithms and the error anal­

ysis of the results. In addition, experimental results are shown to demonstrate the 

practicality of this approach. The major purpose behind this work is to develop and 

implement practical methods of obtaining reliable estimates of flaw sizes, shapes and 

locations in materials where the inspectability is a limitation. 

The dissertation is divided into four sections. Chapter 2 deals with the recon­

struction of the locations of flaw feature points as well as crack-like flaws using a 

stereo-radiographic approach. We use the term reconstruction henceforth to mean 

the estimation or determination of parameters of the flaw model. Chapter 3 presents 

the theory of two-dimensional volumetric flaw parameter estimation using an ellipti­

cal flaw model. This chapter is used as a precursor to Chapter 4, which deals with 
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three-dimensional ellipsoidal flaw parameter estimation. Chapter 5 is devoted to 

addressing practical issues of measurement data acquisition as well as experimental 

results of the model-based volumetric flaw parameter estimation. 
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2. STEREOGRAPHIC RECONSTRUCTION 

2.1 Background 

Reconstruction from stereographic projections is not a new idea. It has been in 

use for a long time to reconstruct depth and location of objects from two viewpoints 

of the same object. The basic idea behind stereographic reconstruction is to use 

the disparity between the same objects in stereo images to extract the 3-D depth 

information about the object. For images produced by shifting the x-ray source. 

The reconstruction involves geometric triangulation and is illustrated in Fig. 2.1. 

There is a large body of literature on stereographic reconstruction for many different 

applications. Among these applications are robot vision (Pong et al. 1989), scene, 

analysis, photogrammetry (Day and Muller 1989), nondestructive evaluation and 

medicine (Stern and Lewis 1970; Oden et al. 1958). In most of this literature the 

reconstruction is based on camera views of opaque objects and scenes. With this 

type of reconstruction, there is a uniqueness assumption that states for any feature 

point, there is a unique disparity value between the two stereo projections (Crimson 

1981). 

There is also a broad field of study, called stereology, which is the study of three 

dimensional structure from two-dimensional images. Much of the work in this field is 

devoted to determining sizes, shapes, numbers and orientations of objects from their 



www.manaraa.com

19 

x-ray source 2 x-ray source 1 

Object under test 

projection of object 
from source 1 

projection of object 
from source 2 

Figure 2.1: Illustration of stereographic projection with shifted 
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two dimensional images (Elias and Hyde 1983). Most of the work, however, assumes 

the images have been obtained by slicing through the test material so that the image 

represents a true two-dimensional version of the object (Russ 1986). Other image 

formats include the viewing of discrete particulate matter that has been dispersed on a 

flat substrate and projections of flat sections of objects as viewed in a microscope. All 

of these formats are distinctly different from that obtained from an x-ray projection. 

This is because the intensity at any point in the image from an x-ray projection is 

influenced by all features in the material along the ray path back to the x-ray source. 

Stereology concepts can be useful, however in computing properties of volumetric 

flaws as will be shown in Chapter 5. 

A major issue in stereoradiographic reconstruction is solving the problem of 

identifying the same features between the different projections. This is known as the 

correspondence problem. The correspondence problem has been addressed by many 

researchers in the field of machine and computer vision to perform automatic locating 

of objects. Many of these techniques will be discussed in a later section. The following 

section assumes that the correspondence problem is solved and presents the derivation 

of the reconstruction equations for point features or piecewise linear features. 

2.2 Stereographic Reconstruction Equations 

The reconstruction of the 3-D location of a feature from stereographic x-ray 

views can be accomplished through a linear shift of the object under test. Often 

times, this is a convenient method as the sample can be placed on an automatic 

positioner and translated while the x-ray source and detector system remain fixed. 

The derivation of the reconstruction equations presented here uses the shifted sample 
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scheme with a microfocus x-ray source (point source). It is a simple matter, however, 

to reformulate the problem for a shifted source scheme when that type of arrangement 

is being used. The shifting process allows the coordinates of the features of interest 

to be uniquely reconstructed. Multiple shifts can also be incorporated to obtain 

least-squares solutions for the feature locations. 

Figure 2.2 illustrates the geometry used for the reconstruction of a crack like flaw. 

In this case, the sample under test is shown as the shaded box on the left with a crack 

like feature inside being approximated by a single linear segment. The objective is 

to reconstruct the endpoints of the linear segment in 3-D from two projections of the 

sample. Even though the simulated crack shown has zero thickness, it is assumed 

that a real crack-like flaw in the material will have sufficient thickness to create a 

signal on the detector. The minimum detectable thickness depends on the type of 

detector being used. For highly sensitive film, it is approximately 2% of the total 

thickness of material being inspected (Nondestructive Testing Handbook 1985). 

We label the endpoints of the segment as (a?cl»ycl»^cl) (®c2» fc2''®'c2)' 

These endpoints project to the detector coordinates (®ii,yii,0) and (®i2>yi2»0)) 

respectively. When the sample is shifted by amount xj< in the x direction the new 

segment endpoints become (a^l + zy, Vch (®c2 + fc2' ̂ c2)- These end-

points project to the detector coordinates (x2i,y21>0) (®22'f22'®)' respectively. 

The lines connecting the x-ray source to the segment endpoints can be described by 

parameterized vector equations. The generic form of these equations is given by 

V = v, + <(V^-V,), (2.1) 

where V,- is the vector from the origin to an initial point on the line to be described, 
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X-ray source il (X,,y,. z.) 

(Xel «ycl » ^cl ) 

Sample under 
test 

Crack 

(x„+ XT.yci,  Zc) 

Shifted sample 

(Xc2 Xt »y c2 » Zc2 ) 

11 »y 11 ) 

(X12 .y 12) 

Film Plane 
(*21 .y 21) 

Figure 2.2: Geometry for crack reconstruction (shifted sample) 
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and Vy is the vector from the origin to a final point on the same line. The parameter, 

(is a scalar that varies between zero and one as the vector moves from the initial 

point to the final point along the line. For the x-ray line through the first endpoint 

of the unshifted sample, we write 

V,' = xii? + yi2J + 0Â (2.2) 

Vy = + ysj + Zsk (2.3) 

where t, j, k are the unit vectors in the z, y and z directions, respectively. Thus 

for both endpoints of the shifted and unshifted segment, we have the following four 

vector equations: 

Vii = xiit + yiii + <i[(x3-irii)t + (y3-yii)l + «sfc] (2.4) 

Vi2 = xi2i + yi23 •^h\i^s-xi2)t + {y3-yi2)j+ (2.5) 

V21 = X2il-\-y2l3 + h[i^s-X2i)i + {ys-y2i)3+'^sîî\ (2.6) 

V22 = ®22^ + y223 + - ®22)» + iVs - î/22)j + (2.7) 

We constrain these equations to be the vectors to the segment endpoints. Thus, 

Vll = XciiycV + Zcl 'k (2.8) 

V12 = Xc2'i + yc2j + (2.9) 

V21 = (xcl + xj')t + yciJ + Zcik (2.10) 

V22 = («c2 + + yc2i + ̂ c2^- (2.11) 

Combining Eqs. (2.4)-(2.7) and Eqs. (2.8)-(2.11), we have 

+ VcV + = ®11» + yii^+ (2.12) 
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<l((a?a - a:ii)î + {ys - yn); + Zsh) 

®c2« + yc2J + = ®12* + VW + (2.13) 

<2((xa - »12)« + {ya - yi2)j + 

(xci + XT)t + ydJ + = ®21» + y2i; + (2.14) 

<3((ar5 - X2i)i + {ys - y2l)i + 

{xc2 + ajy)» + yc2; + ̂ c2^ = ®22* + f22^ + (2.15) 

<4((a?a - 3:22)» + (ys - ̂22); + ̂ sÂ). 

Equations (2.12)-(2.15) yield the following 12 scalar equations: 

®cl =®11+'l(®5-a:ii)  (2.16) 

yci = yn+hiys-yn) (2.1?) 

Zcl — (2.18) 

®c2 = ®12 + *2(®s - ®12) (2.19) 

yc2 = yi2 + '2(^5 - yi2) (2.20) 

^c2 ~ '2^5» (2.21) 

®cl + «y = «21 + '3(®« - ®21 ) (2.22) 

yd = ^21 + *3(y^ - y2i ) (2.23) 
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"cl = (2.24) 

and 

®c2 + ®r = ®22 + *4(®'S ~ ®22) 

Îfc2 == f22 + Uitfs - y22) 

"c2 ~ ̂ 4^3' 

(2.25) 

(2.26) 

(2.27) 

From Eqs. (2.18) and (2.24), and Eqs. (2.21) and (2.27), we see that ti = (g and 

<2 = <4. We can easily solve for these parameters by subtracting Eq. (2.22) from Eq. 

(2.16) and Eq. (2.25) from Eq. (2.19). This yields the equations 

XT = («21-®ll) + *l(®ll-®2l) 

XT = (®22 - ®12) + *2(®12 - ®22)-

Solving for and <2 we get 

The segment endpoints are computed by substitution of Eqs. (2.28) and (2.29) into 

Eqs. (2.16)-(2.21). We have, 

^ (ary + xil -X2\) 

(®ll-®2l) 
(2.28) 

[xT + X12 - X22) 

(®12 - ®22) 
(2.29) 

Xci = xn + 
(xT + aril - z2i)(za - gn) 

(®11 -®2l) 
(2.30) 
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M = (2.31) 

= ,,,+ <£r±£iag-£12) (,.33) 

»C2 = m2+'r + "2-^2)^-m) (,3,) 

= »4»r + »12-»22). (2.35) 
(®12-®22) 

These equations can be generalized to compute the coordinates of an arbitrary 

number of endpoints along a piecewise linear curve. They can also be easily modified 

to account for a sample shift in the y direction. The length of the individual crack-like 

segments is computed as the distance between endpoints and is given by 

- V(»cl - ®c2)^ + (fcl - fc2)^ + (M - ̂c2)^- (2.36) 

FVom a computational standpoint, it is useful to implement these equations in 

a spreadsheet package such as LOTUS 1-2-3 (reference). In this way, the crack 

coordinates can be easily recomputed by adjusting any of the input parameters such 

as the projected coordinates of the crack or the x-ray source location. This type of 

computational environment is also very useful to get an intuitive feel for how the 

reconstructed coordinates vary as certain parameters are changed. Figure 2.3 shows 
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CRACK RECONSTRUCTION 

OUTPUTS 

t1 = 0.5000 
t2 = 0.5487 

Crack coordinate 1 
( xc1 yd zcl ) 

113.5000 14.0000 286.0000 

Crack coordinate 2 
( xc2 yc2 zc2 ) 
98.5398 -19.4336 313.8407 

INPUTS 

Film coordinates 

(x11,y11) 142.0000 19.0000 
(x12,y12) 115.0000 -54.0000 
(x21,y21) 40.0000 19.0000 
(x22,y22) 2.0000 -54.0000 

Sample shift 
(dx.dy) -51.0000 0.0000 

Source coordinates 
( xs ys zs ) 

85.0000 9.0000 572.0000 

Figure 2.3: LOTUS spreadsheet display of a sample crack reconstruction 

an example printout of the LOTUS display of a sample reconstruction. Under the 

heading labeled INPUTS, the Aim coordinates are entered along with the sample shift 

distances and x-ray source coordinates. The coordinates of the two crack endpoints 

and the parameters ti and <2 are displayed under the heading, OUTPUTS. When any 

input parameter is changed, the values under the OUTPUT heading are immediately 

recomputed and displayed to reflect the changes. 
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2.3 Experimental Scenario 

In performing an experiment to reconstruct the locations of crack endpoints, 

the general procedure is to acquire the x-ray data, perform the appropriate measure­

ments, and compute the endpoint coordinates. Acquisition of the x-ray data involves 

obtaining at least two radiographs of the features of interest using a suitable detector 

such as film or image intensifier. The two projections are made of the object in a 

reference or original position and of the object after a known linear shift. Included in 

these projections must be a suitable landmark or reference marker that is invariant of 

the object shift. This landmark is used as a coordinate system reference from which 

to measure the film coordinates. 

The measurements required for reconstructing the crack locations are the co­

ordinates of the projected crack endpoints in the reference image, and 

(^12i ^12) (assuming that only one linear segment is used to approximate the crack), 

the coordinates of the corresponding points in the image of the shifted object, 

(®21 > f2l) (®22» 2/22)1 ^nd the coordinates of the x-ray source, (xs-, ya, zs). These 

measurements are typically made with respect to the reference landmark on the film 

mentioned earlier. These values are then used in Eqs. (2.30)-(2.35) to compute the 

coordinates of the crack endpoints in 3-D. Equations for the error bounds on the 

coordinates using a sensitivity analysis are derived in the next section. 

2.4 Reconstruction Error Equations 

Errors in the reconstructed coordinates are caused by experimental measurement 

error, numerical uncertainty and correspondence error. We can establish maximal 
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bounds on the reconstruction error by estimating maximal bounds on the errors in 

the input parameters. The maximal reconstruction error is computed through error 

equations derived by a sensitivity analysis. 

For the x^i coordinate, we And the maximal error by first writing it in functional 

form as 

® c l  ~ ( 2 . 3 7 )  

The quantity xj< is treated as a parameter because it can be controlled much more 

accurately than the other measurements, especially when the sample is shifted using 

an automatic positioner. 

The form of the function found by simplifying Eq. (2.30) is 

^ + 'Tfa-»!!). (2.38) 
X l l  - X 2 i  

The total differential of this function is 

(2.39) 
dxii ' dx2i " dx, 3 

+ A + ^ 
V ®11-®21/ 

An upper bound for the reconstruction error can be written as (Young 1962 , p.7) 
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Axcl < 
^fxcl 
dxii 

Aarji + 
dx2i 

A®21 + Ê&sl 
0X3 

Aaja, (2.41) 

where Azu, Az2i and Axs are the estimated maximum errors on zgi, and 

zg, respectively. 

Absolute values of the partial derivatives are used to guarantee a maximum 

bound on the reconstruction error. In practice, we use Eq. (2.41) to determine the 

maximum variation in the reconstructed coordinated based on estimates of Az^i, 

âkX2i and Ax3. These quantities are determined from estimated errors or uncer­

tainties encountered in the experimental measurement process. We usually have a 

good good feel for the maximum source coordinate error as these numbers are usually 

collected by hand with a tape measure or ruler. Assigning errors to the film coor­

dinate measurements can be more tricky. These errors are caused by imprecision in 

the measuring device, detector misalignment, geometric unsharpness and correspon­

dence. We can compute a bound on the contribution of geometric unsharpness due 

to the finite size of the x-ray source from the x-ray source size and the measurement 

geometry (Halmshaw 1982). We can also estimate bounds on the measurement im­

precision and detector misalignment from the process of setting up the experiment. 

The most difficult contribution to account for is the correspondence error. Because 

we have no knowledge of the true flaw distribution, it is impossible to obtain exact 

point correspondence between the projections. In some cases, however, it is possible 

to examine the flaw features and estimate a value for a maximum correspondence 

error. The maximum correspondence error is the total distance across the flaw in the 

case of crossed disparities (see later section on the correspondence problem). Crossed 
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disparities refers to the apparent crossing of the projected feature points between 

the two projections. Since this condition is relatively rare, the correspondence error 

is usually much less. A typical maximum to use in practice when correspondence 

cannot be made with high confidence is 25% of the distance across the feature. 

Equation (2.41) is primarily intended for the scientist to determine how his or 

her experimental errors affect the reconstructed coordinates. It is very useful to know 

if the bounds on the reconstruction errors are a significant fraction of the nominal 

values in establishing a confidence in the method. 

The estimated reconstruction error bounds for the other coordinates are com­

puted similarly and are given by 

xt{X22 - xs) 

(«12 - 3^22)^ 
a? J» 

Aa;i2 + 
gy(a?i2 - xs) 

(®12 - ®22)^ 
Az22 + 

1 + 
(«12 - «22) 

(2.42) 

^Vcl ^ II. 
(®11 -®2l) 

^r(yii -ys) 

(®ii - ®2l)^ 

Ayii + 

Az2i + 

^Tivn - ys) 

(orii -ar2i)2 

1 + 
(®11 -®2l) 

Axji + 

Ays 

(2.43) 

Aî/C2 ^ 
(®12 - ®22) 

a:T(%/12 ~ Va) 

{xi2 - X22)^ 

^yi2 + 

Aa;22 + 

- ys) 

(a?i2 - a?22)^ 

1 + 
(®12 - ®22) 

Aa:i2 + 

Ays 

(2.44) 

àzci < 
XipXs  

(xii -«21)2 
Aarii + 

XipXs 

(®12 - «22)2 
Aar2i + (2.45) 
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l + T-a 
Ml - ®2l) 

Azs 

àzc2 < 
XrpXs 

(«12 - ®22)^ 

1 + 
Xn 

(«12 - «22) 

Axi2 + 

Azs' 

X f X s  

(«12 - «22)^ 
A®22 + (2.46) 

The error bound on the crack length is computed by taking the total differential of 

Eq. (2.36), yielding 

^ (^){|2(«cl-«c2)l(^«cl+^«c2) + l%cl-fc2)l (2 47) 

(Ayci + Ayc2) + |2(«cl - ̂c2)l (^«cl + ̂ ^c2)}-

The error bound equations have been incorporated into the LOTUS spreadsheet 

package with the reconstructed coordinates. A printout of the LOTUS display for a 

sample reconstruction is shown in Fig. 2.4. The inputs to the spreadsheet are the 

quantities under the Error Estimates heading and the Measurements heading. From 

these values, the reconstructed coordinates and the corresponding upper bounds on 

the errors are computed and displayed under the headings Reconstructed Coordi­

nates and Reconstruction Error, respectively. Again, this type of computation and 

display is extremely useful in determining the effects of measurement geometry and 

experimental errors on the reconstruction error bounds. 

Ideally, one would like to perform the experiment many times and estimate the 

variances of all the measurements. The variance of the reconstructed coordinates 

could then be estimated using the standard propagation of error formula (Young 
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Error Estimates Reconstruction Er 

(dxl1,dy11 ) 0.50 0.50 dxcl 1 .2733 
.(dx12,dy12) 0.50 0.50 dycl 1.3282 
(dx21,dy21) 0.50 0.50 dzcl 3.6340 
(dx22,dy22) 0.50 0.50 dxc2 1.3170 

dxs 2.00 dyc2 1.5568 
dys 2.00 dzc2 3.4149 
dzs 2.00 dL 6.1330 

Measurements 

(x11,y11) 144.0 20.0 
(x12,y12) 114.0 -50.0 
(x21,y21) 38.0 20.0 

• (x22,y22) 2.0 -50.0 
(xs,ys,zs) 85.0 9.0 572.0 

dx -51.0 

Partial Derivatives 

dxcl/dxs 0.51887 dxc2/dxs 0.54464 
dxcl/dx11 0.21333 dxc2/dx12 0.33745 
dxc1/dx21 0.26780 dxc2/dx22 0.11790 
dyc1/dys 0.51887 dyc2/dys 0.54464 
dycl/dyl1 0.48113 dyc2/dy12 0.4553Ô 
dycl/dxl1 0.04993 dyc2/dx12 0.23986 
dycl/dx21 0.04993 dyc2/dx22 0.23986 
dzcl/dzs 0.51887 dzc2/dzs 0.54464 
dzcl/dxl1 2.59630 dzc2/dx12 2.32557 
dzcl/dx21 2.59630 dzc2/dx22 2.32557 
dl/dxcl 0.39435 
dl/dycl 0.83535 
dl/dzcl 0.38297 

Reconstructed Coordinates 

t1 0.5189 
t2 0.5446 
xc1 113.3868 xc2 9 8 . 2 0 5 4  
yc1 14.2925 yc2 -17. 8 6 6 1  
2 C l  296.7925 zc2 3 1 1 . 5 3 5 7  
length 38.4969 

Figure 2.4: LOTUS spreadsheet display including estimated error bounds 



www.manaraa.com

34 

1962) 

'Li= 

where «'xjj» are the sample variances of xj^, »21 xs, respec­

tively. However, it is often very impractical to estimate the variances since it requires 

performing the same experiment many times. 

2.5 Formulation in Terms of a Linear Model 

In a previous section we have derived the reconstruction equations from 10 scalar 

equations with 6 unknown desired parameters and two unknown nuisance parameters. 

If we write the equations in terms of a linear model, we have an overdetermined sys­

tem of equations. Because of the random and systematic errors in the measurement 

variables, there are many possible solutions to this system. A linear model formula­

tion with an overdetermined system that possibly includes extra projections is ideal 

for treating the reconstructed coordinates as random variables and optimally esti­

mating them. If we assume iid and normally distributed errors in the measurement 

variables, then the best linear unbiased estimator (BLUE) for the reconstructed co­

ordinates is the least squares estimator (Bain and Engelhardt 1987). If the errors are 

not correlated or not identically distributed the estimator is not the BLUE, however, 

the least squares estimator is still a useful and convenient criterion for estimating the 

coordinates. We formulate the model in the following way. 

Let 

r = H0 + e (2.49) 



www.manaraa.com

35 

where 

«11 1 0 

yn 0 1 

0 0 0 

«12 0 0 

yi2 0 0 

0 , H = 0 0 

«21 ~ «T 1 0 

y2i 0 1 

®22 - «r 0 0 

f22 0 0 

0 = 

and e is the vector of residuals. 

Notice that the linear system can 

from extra projections. This can be d 

0 0 0 (xji - xs) 0 

0 0 0 (yii -ya) 0 

1 0 0 0 Z3 0 

1 0 0 0 (xi2 — xs) 

0 10 0 (j/i2 - ys) 

0 0 1 0 zs , 

0 0 0 («21 — X s )  0 

0 0 0 (y21 - ys) 0 

1 0 0 0 (a;22 — x s )  

0 10 0 (y22-ys) 

"cl 

Vcl 

^cl 

®c2 

fc2 ' 

^c2 

*1 

t2 

augmented to include measurement data 

i by repeating the experiment more than 
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once or by taking projections with different sample shifts. The least-squared error 

solution to the system is found by minimizing ||e||^. We write 

S = ||e||2 = ||r-HÔ||2 = (r-HÔ)2"(r-H^) (2.50) 

= r'^r + e'^H^ne-e'^H^r-r^He. (2.51) 

Then setting 

QO 
w = " 

= 2(H^H)«-H^r-H^r, (2.53) 

the least-squares estimate of 6 is 

éis = (2,54) 

2.6 Total Least-Squares Solution 

In the previous section, the reconstruction equations were formulated in terms 

of a linear model so that the least-squares estimator could be used to estimate the 

coordinates. One of the assumptions built into the method of least squares is that 

there is no error in the explanatory variables. For the 1-D case of a linear model 

yi = Xj-m + ej 

it is assumed that the explanatory variable, has no error when estimating the slope, 

m. In the linear model of the reconstruction equations, the matrix of explanatory 

variables, H consists of measurement variables themselves. For this type of situation, 

there is a method called total least squares (TLS) to minimize the sum of squared 

errors (Golub and Van Loan 1979, 1980). The method is called total because the 



www.manaraa.com

37 

y 

Ordinary Irast square 
errors 

Total least square 
errors 

X 

Figure 2.5: Comparison of residual error criteria in total vs. ordinary least squares 

residual error is minimized subject to the total error of r and H The residual errors 

for total and ordinary least squares in a 1-D case are illustrated for comparison in 

Fig. 2.5. In this case, the total least squares estimator minimizes the perpendicular 

distance from the data point to the fitting line or hypersurface instead of the vertical 

distance used in ordinary least squares. 

We write the linear system for a total least squares scheme as follows: 

r + e = (H + E)0. (2.55) 

where e and E are the errors in r and H respectively. The TLS problem can be 

thought of as perturbing r and H by minimal amounts so that (r + e) can be "pre­

dicted" by the columns of (H+E) (Golub and Van Loan 1980). This is accomplished 
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by minimizing 

l|E I e||^ 

where ||'||jp is the Frobenius norm (Kreyszig 1987, p.824). The total least squares 

solution is 

his = - 4+iI)-ls^'u^'r, (2.56) 

where the matrices U, V and S are obtained from the singular value decomposition 

(SVD) of H (Golub and Van Loan 1989, p. 471), 

H = USV^. 

Here, H is the m x n matrix of explanatory variables, U is an m x m orthogonal 

matrix, V is an n x n orthogonal matrix, and S is the m x n matrix of singular values 

of H. The value is the minimum singular value of [H|r] (Golub and Van Loan 

1980). Of importance is the fact that the total least squares solution may not exist. 

The condition for existence is that 3n < a^+I* where sn is the minimum singular 

value of H. 

An alternative method to the TLS solution is to use the normal equations (Bran-

ham 1989). This yields 

his = - 4+iI)-lH^'r. (2,57) 

The value can be computed either through an SVD of [H|r] or by an 

eigenvalue-eigenvector decomposition of [H|r]^[H|p] (Branham 1989). 

2.7 Experimental Issues 

In performing stereographic reconstruction, there are several practical issues 

that must be considered. These include the experimental setup, the measurement 
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process, and the choice of x-ray detector. In setting up the experiment, a method 

must be available to translate the sample under test in a direction parallel to the 

detector plane. In addition, source location and detector coordinates with respect to 

some fixed reference point must be determined with as much accuracy as possible. 

We must also keep in mind that the locations computed from the reconstruction 

equations are with respect to this fixed reference point. A good way of establishing a 

reference point is to produce an x-ray shadow of a well defined object such as a thin 

needle point on the detector in a location that will not interfere with the features 

of interest. Because the object producing the reference shadow is fixed during the 

test-object translation, it can be used as the origin of the measurement coordinate 

system. It is also convenient to define the film plane as the z = 0 plane as used 

in the formulation of the reconstruction equations. This works especially well when 

using film as a detector. The reason is that two separate films are needed for the 

stereographic projections. When the film cassette is replaced, it is not necessary to 

have it perfectly registered in the z = 0 plane with the previous film, as the reference 

point will still have the same location. 

Accurate measurement of the source location and guaranteeing sample transla­

tion parallel to the detector can be tricky business, especially with some laboratory 

setups. Often, due to cramped quarters or making the measurements in the field, this 

is quite diflScult. The best approach is to use plumb bobs, levels, tape measures, and 

angle iron to attempt the most accurate measurements. In laboratory measurements 

it can be useful to use the laboratory floor as one reference plane. The plumb bob 

can then be dropped from the x-ray source and the reference point to the floor to 

measure their height (y-coordinate). The x and z coordinates can be measured easily 



www.manaraa.com

40 

off of the floor. Alternatively, one can run a line from the source to the detector 

plane with a level. A good method for guaranteeing sample translation parallel to 

the detector plane is to check for equal sample-to-detector distances at several shift 

amounts. 

In setting up the radiography experiment and making the measurements, the 

best approach is to do it as precisely as possible while estimating the uncertainty for 

the various measurements. These uncertainties should be used in the reconstruction 

error equations. The beauty of these equations is that they tell the experimenter how 

the uncertainties in the experiment affect the results. It is extremely useful to know 

if the reconstruction results are potentially dominated by measurement errors for a 

given experimental setup. 

Another experimental issue is the choice of x-ray detector. The types of de­

tectors under consideration here are film, real-time image intensifier and scanning 

scintillation. The factors of importance that are affected by the choice of detector 

in stereographic reconstruction are spatial resolution and sensitivity. Because we are 

mainly interested in feature locations in performing the reconstruction, the actual 

detector signal levels associated with flaw features are not as important as simply the 

presence of flaw signals and their locations. Detector sensitivity determines whether 

or not a signal will be present with some perceptible contrast. In this sense, for very 

faint signals associated with small flaws, or flaws which are small compared to the 

thickness of material under inspection, the scintillation detector is superior by virtue 

of its extremely large dynamic range and integration ability. The real-time image 

intensifier is not nearly as sensitive as either the scintillation or film detectors but 

it can be used with multiple acquisitions to effectively integrate and reduce noise, 
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increasing its sensitivity. Film sensitivity can range from good to bad depending 

on the film speed. A slow speed film with long integration time yields the highest 

sensitivity (Halmshaw 1982). Good detector spatial resolution is required to obtain 

accurate measurements of the feature coordinates. The scanning scintillation counter 

potentially has the highest resolution depending on the mechanics of the scanned. In 

some cases resolution as fine as 10 microns is possible. Film has the next best reso­

lution followed by the real-time image intensifier. In most cases, however, the image 

intensifier has adequate resolution to accurately measure the coordinates of the fea­

tures of interest. The problem with the scanning scintillation counter, is that it 

takes too much time to build up a 2-D image with sufficient resolution. Thus, either 

film or image intensifier will usually sufiice as an acceptable detector for this type of 

reconstruction. 

2.8 The Correspondence Problem 

One of the most important problems in all of stereographic reconstruction is 

that of correspondence (Weinshall 1990). Correspondence refers to the matching 

of identical features between the two projections so that the disparity can be used 

to reconstruct the feature position in 3-D. Disparity is defined as the distance be­

tween identical features in the stereo images. Matching corresponding features can 

be quite difficult in many cases due to presence of similar features, occluding fea­

tures, nonunique features, undetectable features due to their orientation, and crossed 

disparities. In radiography, the presence of similar features is quite common as many 

voids, cracks, and porosity structure look alike. Occluding occurs when a feature 

blocks the line of sight of another feature to the x-ray source. Figure 2.6 illustrates 
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Figure 2.6: Example of occluding feature 

an example of an occluding feature. Notice that in this projection feature 1 occludes 

feature 2. If the source was moved to the left, the two features would be distinct and 

the projection would move to the right. 

Nonunique features refer to the fact that in projection radiography, a feature in 

the image plane does not necessarily correspond to a unique feature in 3-D space. 

This happens because each point in the image plane is a result of the integration 

of all features along the x-ray path connecting the image point to the x-ray source. 
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Fig. 2.7 shows a very dramatic case of the uniqueness problem. The projection of 

the unshifted crack-like feature produces a one-to-one correspondence between each 

point on the detector and each point on the feature, while the projection of points 

PI and P2 on the shifted crack-like feature are identical. 

In some cases, when the sample under test is shifted, a feature of interest may 

have changed orientation making it undetectable due to a small x-ray path length 

within the feature. When the feature becomes undetectable in the shifted image, 

identification of corresponding points is impossible. This is a potential problem with 

the detection of extremely thin cracks. When the crack is perpendicular to the path 

of the x-ray, it may be undetectable, however, it may be perfectly detectable when it 

is oriented with some non-perpendicular angle. 

Crossed disparities refers to the situation in which the order of the corresponding 

features from left to right becomes reversed when the object under test is shifted. 

Figure 2.8 illustrates this situation for a crack like flaw. Notice that the ordering of 

the projections of PI and P2 have reversed after a shift of the crack-like feature. 

The problems with correspondence discussed above indicate that it is difficult 

to come up with any general strategy for matching all points in stereographic x-ray 

projections. Almost all literature on the subject of correspondence addresses the 

problem from a computer vision standpoint where correspondence matching is to be 

performed automatically. Some of these techniques (Crimson 1981, Marr and Pog-

gio 1979, Aloimonos and Hervé 1990) make certain assumptions about the scene to 

eliminate some of the problems discussed above. Marr and Poggio (1979) attempt to 

understand the human early visual system to design appropriate matching strategies. 

Aloimonos and Hervé (1990) make the assumption that all points to be reconstructed 
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Figure 2.7: Example of the nonunique correspondence 
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Figure 2.8: Example of crossed disparities 
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lie in a plane of unknown location and orientation. This assumption relaxes the re­

quirement of exact correspondence. All that is required is the x-y locations of all 

feature points in stereographic scenes. Marr and Poggio (1979) assume uniqueness 

as well as slowly varying feature surfaces. They also introduce the idea of elimi­

nating false matches by reducing the resolution of accepted disparities and limiting 

the absolute range of accepted disparities depending on the physical situation. An 

interesting book by Crimson (1981) has taken much of this work and shown how to 

implement it. In addition, it presents a very good literature review of the area of 

surface reconstruction from stereo images. The common feature of these techniques 

is that they attempt to match a large number of points in the image (either all image 

points or points along edge pixels) automatically. 

An alternative approach is to match only feature points that are of interest. 

An obvious first step to this approach is to perform edge detection on the images 

and reconstruct only the edge features. Even with edge images, we still have a 

correspondence problem with matching points on the edges between the two images. 

The problem can be reduced by interpolation of the egdes and treating them as 

curves (Brint and Brady 1990) or piecewise linear curves (Mendioni and Nevatia 

1985). There is a fundamental limitation, however when attempting to reconstruct 

the edges of a smoothly varying surface such as a spheroid. When such an object is 

viewed from different orientations, the edge points of its projections do not correspond 

to the same points on the physical surface on the object. Figure 2.9 illustrates this 

point. Notice that PI and P2 do not correspond to points PI' and P2', respectively. 

The most accurate correspondences are made when the feature of interest has 

sharp edges such that these edges can be identified with confidence in the stereo 
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Figure 2.9: A smoothly varying surface projects noncorresponding edges 
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projections. Crack-like flaws generally meet this requirement as the ends of a crack 

usually terminate at a point and they usually have a one- or two-dimensional struc­

ture. 

In an NDE application, stereographic reconstruction does not necessarily need 

to be performed automatically. In applications such as robotics and machine vision, 

the reconstruction is automatic by definition. In fact, there is a great reluctance in 

the NDE and medical fields to believe the results of reconstruction when automated 

processing is involved. The reason is that the error rates are too high and the penalty 

for error is very large. This reluctance is slowly disappearing as the field of image 

processing advances and effects of processing are quantified using rigorous informa­

tion measures. In NDE flaw reconstruction, the images are often very complicated 

and only a few features require identification for reconstruction. The most accurate 

method of selecting the flaw features is manual identification. This requires the NDE 

technician to view each stereo pair of images and select the features to reconstruct as 

well as identify the corresponding features. When the number of features is relatively 

small, manual identification can be faster and more reliable than automatic identifi­

cation. The primary advantages of automated identification in this type of situation 

are the reduction of operator fatigue and the cost savings of eliminating the operator 

from the task. 

2.9 Interactive Stereo Correspondence and Reconstruction 

With the permeation of graphics workstation computers into NDE, an interactive 

stereographic reconstruction routine is feasible in which the stereo image pairs are 

displayed side by side and features are reconstructed by interactively identifying 
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corresponding feature points in the left and right images. This type of reconstruction 

routine has been incorporated into a commercial image processing software package 

being developed at ISU (Brown et al. 1990). Among the features of this package are 

that it is user friendly, it is menu and mouse driven, and it is easy to augment with new 

routines as they become available. The stereographic reconstruction routine requires 

stereo image pairs and physical information about the inspection geometry. The 

routine initiates by prompting the user to select the left and right images with a mouse 

click in each image. The user is then prompted to point and click with the mouse 

at the location of an absolute reference point in both images. This reference point 

usually corresponds to the origin of the measurement coordinate system and serves as 

a reference for measuring the coordinates of the image features. A parameter menu 

then appears in which the physical distances and coordinates associated with the 

inspection geometry are entered. Figure 2.10 shows a photograph of the workstation 

display with two images and the parameter block displayed. A description of each 

parameter is given below: 

source x = x coordinate of x — ray source location 

source y = y coordinate of x — ray source location 

source z = z coordinate of x — ray source location 

reference x = x coordinate of reference point in images 

reference y = y coordinate of reference point in images 

shift X = Distance of source or sample translation in the x — direction 

shift y = Distance of source or sample translation in the y — direction 
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Figure 2.10: Interactive reconstruction environment 

source or sample = Flag indicating a source or sample translation 

dist/pix X = Absolute distance per pixel in the x direction 

dist/pix y = Absolute distance per pixel in the y direction 

numfeat = Number of points to be reconstructed 

Done = Indication all parameters have been entered 

The geometry used in the reconstruction computations of this package require 

that the plane of the detector correspond to the z=0 plane. It also assumes that 

the sample or source shift is invariant in z. Once the "done" menu is clicked in 
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the parameter menu block, the user is prompted to point and click corresponding 

features in the left and right images until the requested number of features have been 

identified. The routine then calculates the 3-D location of each feature with respect 

to the coordinate system origin and displays these coordinates in a new menu-type 

block. The feature points in the two images are highlighted and all coordinates 

of feature points and reconstructed points as well as the inspection geometry are 

recorded in an image history file. 

2.10 Experimental Results of Stereographic Reconstruction 

Tests of the stereographic reconstruction method were made on three types of 

objects. The objects were a fabricated sample consisting of a needle imbedded in a 

slab of paraffin wax, a railroad frog, and a fabricated sample consisting of holes of 

varying diameters and depths drilled into an aluminum slab. 

2.10.1 Reconstruction of Needle Length 

A sample was fabricated consisting of an ordinary sewing needle imbedded in 

a slab of paraffin wax. The objective was to accurately reconstruct the length of 

the needle from stereo projections from a microfocus x-ray source in magnification 

mode. Figure 2.11 shows a schematic diagram of the experimental setup. The x-ray 

machine was a Ridge microfocus (Model HOMX 160A) unit capable of generating 

x-rays with energy levels up to 160KeV. The approximate focal spot size of the source 

is 10 /xm. The x-y stage was a computer controlled positioner for precise translation 

of the sample. A film cassette, holding Kodak DEF-5 film was used as the detector. 

The absolute reference was obtained by producing a shadow of a fixed needle onto 
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Figure 2.11: Experimental setup for stereo radiography 

the films. 

The stereo image pairs were produced by radiographing the sample after trans­

lating the sample 51 mm in the x direction. The image pairs are shown in Fig. 2.12. 

The needle is the large white diagonal line in the figure. In the digitized and dupli­

cated images, it is difficult to see the needle endpoints especially when the shifted 

sample is close to the stand. In the original radiographs, however, the endpoints 

are readily visible. The fixed reference point is the tip of the vertical white feature 
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attached to the top of the stand. 

The measurement quantities and reconstruction results for two independent ex­

periments are summarized in Tables 2.1 and 2.2. Column two contains the measure­

ments made of the quantities listed in column one. These include the coordinates of 

the needle endpoints on the film the x-ray source coordinates (xs,ys,Z3)i 

the sample shift (xj>) and the needle length. Column three contains the calculated 

values for the needle length as well as the coordinates of the needle endpoints in 3-D. 

Column four contains the estimated error bounds on the measured quantities and 

the computed error bounds on the computed quantities. The estimated error bounds 

on the film coordinates were obtained from the estimated precision of the ruler used 

to make the measurements and the geometric unsharpness. For the first experiment, 

the measurement error bounds were estimated to be approximately 0.5 mm. In the 

case of experiment run number 2, the geometric unsharpness was slightly less and 

a ruler with finer graduations was used, hence the reduction in the estimated error 

bounds. The error bounds for the source location were obtained by estimating the 

measurement imprecision, as great care was taken to align the experimental setup. 

The error bounds on the computed needle length and endpoint coordinates were 

calculated using Eq. (2.41) and Eqs. (2.43)-(2.47). 

Notice that in both cases, the reconstructed needle length is very close to the 

true value (within 7 percent) and they are well within the predicted error bounds. 

The locations of the needle endpoints were not measured because the needle was 

embedded within the paraffin, making this measurement very difficult. 
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Figure 2.12: Stereo image pairs of needle imbedded in paraffin sample 
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Table 2.1: Reconstruction results of experiment run 1 

Quantity Measured Reconstructed Error 
value (mm) value (mm) bound (mm) 

(*ll,Pll) (144.0,20.0) ± (0.5,0.5) 

(*12,912) (114.0,-50.0) ± (0.5,0.5) 

(321,921) (38.0,20.0) ± (0.5,0.5) 

(«22,922) (2.0,-50.0) ± (0.5,0.5) 
(®r) -51.0 -

(aa,ya,2a) (85,9,572) ± (2,2,2) 

(«cl,9cl,^cl) - (113.4,14.3,296.8) ± (1.3,1.3,3.6) 

(*c2,9c2,*c2) - (98.2,-17.9, 311.5) ± (1.3,1.6,3.4) 
Length 41.0 38.5 ±6.1 

Table 2.2: Reconstruction results of experiment run 2 

Quantity Measured Reconstructed Error 
value (mm) value (mm) bound (mm) 

(*11,911) (50.5,-34.0) - ± (0.2,0.2) 

(*12,912) (15.0,-76.0) - ± (0.2,0.2) 

(*21,921) (105.3,-34.5) - ± (0.2,0.2) 

(*22,922) (73.0,-76.1) - ± (0.2,0.2) 
(*r) -38.1 - -

(2a,ya,za) (38,64,513) - ± (2,2,2) 

(*cl,9cl,^cl) - (46.7,-4.5,154.4) ± (0.8,1.2,3.4) 

(*c2,9c2, ̂ c2) - (22.9,-28.0,176.0) ± (0.8,1.5,3.2) 
Length 41.0 39.8 ±6.1 
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2.10.2 Reconstruction of Features in a Railway Frog 

A railway frog is the portion of railroad track where two rails come together and 

branch off into different directions. It is used to allow tracks that are going in different 

directions to cross each other. The railroad industry is continually inspecting and 

repairing these frogs as the ever increasing railroad car tonnage causes them to crack 

and wear. Much of the cracking problem is caused by excessive loading, although 

some is caused by material shrinluge during fabrication at the foundry. Thus, the 

railroad industry and the frog manufacturers are interested in NDE inspection as a 

means of quality control as well as for detecting cracks due to loading. 

The heavy and extremely large frogs are cast from a manganese steel alloy. When 

inspected for defects, a judgement regarding the feasibility of repair is made. There 

are essentially three options. Either the flaw content is deemed acceptable and the 

frog is put back into service, the flaws are repaired, or the frog is deemed unrepairable. 

Usually, the only frogs radiographed that have been in service are those which show 

some exterior signs of damage. Exterior wear or cracking can be easily repaired by 

welding and re shaping the surface. The judgement of flaw acceptability is made 

by an experienced radiographer through the comparison of the radiographs against 

ASTM standard radiographs of varying degrees of flaw severity. The degrees range 

from level 1 (not very severe) to level 5 (very severe) for different flaw types (shrink­

age cracks, porosity, inclusions). The cutoff for acceptability is somewhere around 

level 3. There is a fuzzy line on this point because of the inconsistencies between 

different radiographers and the problem of drawing the line between acceptable and 

unacceptable for such a wide variety of radiographs. When the flaw content is judged 

unacceptable, a repair is attempted by cutting into the frog with a torch until the 
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the flawed areas are found. If the areas are close enough to the surface, they can 

be repaired by welding. If not, they cannot be repaired because the structural in­

tegrity would be damaged. At present, the depths of the flaw areas are determined 

during the attempt to repWr the frog. Therefore, it is advantageous to be able to 

compute flaw locations stereographically, saving the time and expense of cutting into 

unrepairable frogs. 

To attempt a sterographic reconstruction of the depth of various flaws, three 

frogs were radiographed at the Chicago & Northwestern Railroad Reclamation Yard 

in Council Bluffs, lA. Unfortunately, the results have not yet been correlated with 

the results of destructive tests. However this will be done at a later time. Figure 

2.13 shows a photograph of the radiographic setup. The frog was leveled by placing 

it between two equal-height stacks of railroad ties. It was then radiographed by 

clamping the x-ray source beneath the frog to a movable stand and placing the fllm 

cassette directly on top of the frog. 

The stereo pairs were produced by shifting the source rather than the frog. 

Because the film holder was in contact with top surface of the frog, a shift of the 

source is essentially equivalent to a shift of the sample with a minor correction to the 

definition of the fllm coordinates. The film coordinates of the features in the image 

after the source shift must be shifted by an amount —zji, where xj< is the source 

shift distance. Note that the coordinate being corrected is the one corresponding to 

the source shift direction. The x-ray source was an isotope of Iridium-192 with a 

strength of 62 Ci. This type of source is common in industrial radiography where 

penetration through large thicknesses of steel is required. The size of the source was 

0.1" x 0.1". This size produces a detectable amount of geometric unsharpness in the 
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image. A maximum bound on the unsharpness is 0.2 mm computed from Eq. (2.58). 

where 

3 = Maximum length across x — ray source 

d =: Source to detector distance 

<^2 = Maximum sample to detector distance. 

Isotope sources also cause a film unsharpness on the order of 0.2 mm. 

A lead reference marker was fixed to the top of the frog to establish the coordinate 

system. The source location was measured with respect to this marker by dropping 

a plumb bob down to the plywood surface and measuring distances on the plywood. 

After shifting the source, the film cassette was relaced with a fresh sheet of film and 

aligned on top of the frog. Figure 2.14 shows the digitized projections of the frog. 

Notice how the flaw features change position relative to the reference marker (white 

line). Table 2.3 summarizes the measurements and the results of reconstructing the 

depth of two flaw features identified in the images. Column two lists the appropriate 

measurements as well as the calculated depth for flaw 1, and column three lists the 

corresponding data for flaw 2. The two flaw features are identified with circles in 

Fig. 2.14. Estimates of the bounds on the measurement errors are ±0.5 mm for the 

film coordinates and ±5 nim for the x-ray source coordinates. These bounds were 

estimated by considering the maximum geometric unsharpness and the measurement 

precision. A different frog was radiographed on a later occasion with the intention 

of submitting it to accelerated service at a test facility in Pueblo, CO followed by 
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Figure 2.14: Stereographic projections of 1st railway frog (flaws of interest circled) 

re-radiography and destructive sectioning. The radiography procedure was similar 

to that of the previous frog. The left and right stereo image pairs are shown in Fig. 

2.15, and the corresponding reconstruction results are given in Table 2.4. In this case, 

four flaw points were selected for depth calculation as indicated by the four columns 

of Table 2.4. Estimates of the measurement error bounds are again ±0.5 mm for the 

film coordinates and ±5 mm for the x-ray source coordinates. The feature points 

selected for reconstruction are highlighted by white dots in Fig. 2.15. 

Observe in both cases that feature points as opposed to crack endpoints were 

reconstructed as the flaw structure in the frog resembles porosity more than cracks. 

This is reasonable as long as the correspondence can be made with high confidence. 
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Table 2.3: Results of flaw depth reconstruc­
tion in 1st railway frog 

Parameter Flaw 1 Flaw 2 
Film coordinate 

(mm) (25.5,0.0) (-12.0,0.0) 
Film coordinate 
(*21,921) (mm) (-79.5,0.0) (-65.5,0.0) 

Source shift 
Xf (mm) -51 -51 

Source position 
(xsjVsjZs) (mm) (0,0,524) (0,0,524) 

Reconstructed 
flaw depth (mm) 29.1 ± 9.4 24.5 ± 9.6 

Table 2.4: Results of flaw depth reconstruction in 2nd railway frog 

Parameter Upper Flaw Lower Flaw Left Flaw Right Flaw 
Film coordinate 
(*ll,yil) (mm) (168.5,25.0) (164.0,31.0) (148.0,31.0) (175.5,36.0) 
Film coordinate 
(*21,921) (mm) (164.5,23.0) (160.0,29.0) (144.0,29.0) (171.5,34.0) 

Source shift 
x^p (mm) -51 -51 -51 -51 

Source position 
ix3,ys,zs) (mm) (191,0,600) (191,0,600) (191,0,600) (191,0,600) 

Reconstructed 
flaw depth (mm) 49 ±9 44 6 9 43.0 ± 9 43.0 ± 9 
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Figure 2.15: Stereographic projections of 2nd railway frog (flaws of interest high­
lighted) 
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In this case, feature points were selected that were relatively isolated and at the 

edge of the flaw structure. Also notice that the maximum error bound on the flaw 

depth is rather high. This could be improved by either making more accurate source 

location measurements or by reducing the source to fllm distance. In general, errors 

can be minimized by using the smallest possible source-film distance due to the lever 

arm effect. The trade-off of using small source-detector distance is the reduction 

in the feature shift distances between various projections. The feature shift must 

be sufficiently large to be measurable. The feature shift amount can be increased, 

however, by increasing the magnification. 

In any case, these experiments demonstrate the promise of this technique in real 

NDE applications in the field. It remains .to be seen, however, how well the results 

correlate with destructive tests. At this point the first frog has finished accelerated 

service after having a failure and is in the process of being re-radiographed and de­

structively sectioned. The accelerated testing was performed on the test frog because 

the railroad industry required data on the performance of the frog under heavy axle 

load in a controlled environment. 

2.10.3 Fabricated Sample of Drilled Holes in an Aluminum Block 

To provide another verification of the stereographic reconstruction technique 

on a sample with varying degrees of feature detectability, a sample was fabricated 

consisting of several 0.5 inch thick aluminum slabs. One of these slabs had a series 

of flat bottom drilled holes of varying diameters and depths. The objective was to 

place the drilled slab between the undrilled slabs and reconstruct the location of the 

various holes in the sandwich. The variation in depth of the holes created features 
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Figure 2.16: Real-time radiograph of drilled block sample (128 averages) 

ranging from undetectable to easily detectable. 

The drilled slab was clamped between two undrilled slabs and radiographed using 

a real-time image intensifier detector. The radiographs were made by translating the 

sample on an automatic positioner to three separate locations and capturing the 

image using a digitizing frame-grabber. Figure 2.16 shows the first radiograph of 

the sandwich after 128 ensemble averages. The average was obtained by repeatedly 

acquiring an image from the intensifier and continually averaging the acquired image 

with the previous image. This is equivalent to acquiring 128 separate images and 

averaging them. 

This type of averaging dramatically reduces the level of the electronic noise in 
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Figure 2.17: Background image obtained from real-time system 

the camera and the x-ray generator noise as the realtime detector by itself does not 

have any integration capacity. The dark line near the right side of the image serves 

as a reference point for the reconstruction coordinate system. It was established by 

mounting a paper clip to the face of the intensifier. The image quality was further 

improved by subtracting a background image with no sample. This removed the 

effects of imperfections in the camera optics as well as trends across the image caused 

by spatial variations in the detector response, radial divergence, and beam fall-off. 

The background image used in the subtraction is shown in Fig. 2.17. 

The resultant three radiographs after background subtraction and slight contrast 

stretching are shown in Fig. 2.18. The holes in the images are not quite circular due 
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to an aspect ratio inconsistency between the frame grabber electronics and the image 

display. This is not too important, however, because a geometric calibration is per­

formed to establish the number of pixels per physical distance unit in the image plane. 

This is done by radiographing a circular ceramic disk of known diameter mounted 

to the face of the intensifier. By counting the maximum number of pixels within the 

extent of the disk in the x and y dimensions, calibration factors for distance/pixel 

are established for the x and y directions. Figure 2.19 shows the image of the disk 

after background subtraction. Notice its oblate nature due to the inconsistent aspect 

ratios. The measured diameter of the disk was 38.0 mm. The extent of the disk in 

the x-direction was 175 pixels and the extent in the y-direction was 221 pixels. Thus 

the calibration factors were 

kx = 0.218 mm per pixel 

ky = 0.172 mm per pixel. 

These calibration factors are useful for any image acquired from the same image 

intensifier detector because no magnification is used. 

The source location with respect to the reference point was x=13 ± 2 mm, y=25 

± 2 mm, z=1984 ± 5 mm. The first translation distance was 18.0 ±0.5 mm, and the 

second translation distance was 25.0 ±0.5 mm. 

The coordinates of the holes to be used in depth reconstruction were selected 

manually as the center of the holes to minimize correspondence error. The z-location 

of each hole was reconstructed using the first and third image for the smaller diameter 

holes, and the second and third image for the larger diameter holes. The results are 

summarized in Table 2.5 for both the least squares (column 2) and total least squares 

(column 3) solution using the linear model. The small hole terminology in the table 
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Figure 2.18: Drilled block radiographs after background subtraction 
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Figure 2.19: Radiograph of calibration disk 

refers to the column of holes on the right hand side of the first image in Fig. 2.18. 

The large hole refers to the column of larger holes on the left hand side of the same 

image. The numbering of the holes begins with 1 at the top and continues with 

2, 3, 4, toward the bottom. Approximate upper bounds on the reconstruction error 

have been computed by using the nominal measurement values in the sensitivity-error 

analysis equations. 

Notice that the reconstructed hole locations are fairly close to the true value and 

are well within the bounds predicted by the error analysis. The reason that the error 

bounds are large is the fact that the source-detector distance is so great. These errors 

could be reduced significantly if this distance were reduced. The fractional error as 

a percentage of the source-film distance would essentially remain the same, however. 
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Table 2.5: Results of z-location reconstruction of holes in drilled block 

Hole z-location LS (mm) z-location TLS (mm) True z-location (mm) 
small hole 1 578 ± 22 579 ± 22 565 ±5 
small hole 2 578 ± 22 579 ± 22 565 ±5 
small hole 3 561 ± 22 561 ± 22 565 ± 5 
small hole 4 580 ± 22 578 ± 22 565 ±5 
large hole 1 570 ± 21 572 ± 21 565 ± 5 
large hole 2 560 ± 21 561 ± 21 565 ±5 
large hole 3 549 ±21 554 ± 21 565 ±5 
large hole 4 560 ± 21 561 ± 21 565 ± 5 

2.11 Stereographic Reconstruction Through Sample Rotation 

In some inspection situations where the part under test is relatively small and 

inspectable from various angles, it is more convenient or easier to rotate the sample 

rather than translate it. The CT inspection scheme usually involves rotation of the 

sample or a bank of detectors. Thus, it seems reasonable to formulate the stereo 

reconstruction equations in terms of a sample rotation. 

We define the reconstruction geometry as shown in Fig. 2.20. The object under 

test is rotated in the x-z plane by an angle 0. The x-z plane is chosen for the rotation 

because it is easily implemented with a turntable type sample holder. Considering a 

single feature point to be reconstructed we write the following parameterized vector 

equations: 

Xf = X1Î + yij + <i{(aa - xj)? + {ys - yi)] + za*} 

Xf' = ajji + yjj + + (ys + ̂ sk] 

(2.59) 

(2.60) 
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x-ray source 

Figure 2.20: Geometry used in sample rotation scheme 

where Xf is the vector from the origin to the line connecting the x-ray source to the 

feature in the image, xii 4- yiJ is the vector from the origin to the feature in the 

image, and ti and <2 are parameters. Note: The primed quantities correspond to the 

vectors and coordinates after rotation. 

The left hand sides of the above equations are constrained to the feature point 

in the material, (zc, î/c> %) yielding 

xc t  +  yc3  + zc& = xp  + y i j  +  <2{(*a - a:i)» + {ys  —y i )3+  zak )  (2.61) 

+ î/cJ + z'ck = x'lt + y'lj 4- <2{(®s - *1)2 + {ys - y})i + zsk}- (2.62) 

From the two vector equations, we write the following six scalar equations: 

xc = «1 +1\(a?a - XI ) (2.63) 

yc = yi + <1 {ya - yi ) (2.64) 

zc = <1^3 (2.65) 
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®c = ®l +'2(®a-®l) 

V c  =  V l  ~ f l )  

z'c = t2Zs 

(2.66) 

(2.67) 

(2.68) 

Unless the coordinate origin is the center of rotation for the object, the center of 

rotation must be specified as (ar, i/r* Zr). The rotation of the feature point (xc, yci zc) 

can be described by the following linear transformation. 

COB 9 0 — sin 0 

0 1 0 

sin 9 0 cos 9 

where the double primed quantities indicated the location of the rotated feature in 

the (3r,yr,2r) reference frame. Converting back to the original coordinate system, 

we have 

y'c 

Xc — Xf 

V c  —  y r  

Zs — Zr 

(2.69) 

Xf 

Vc 

4 

— X^ Xy* 

= Vc+Vr 

+ Zr 

(2.70) 

(2.71) 

(2.72) 

or, 

Xg* — ( x c  — x r )  cos 9 - ( z c  —  z r )  sin 9 - { - x r  

V c  

(xc — Zr)sin6) + (zc — zr)cos9 + zr 

The scalar equations are now rewritten as 

arc = «1 + (i(za -  ari) 

y'c 

4 

(2.73) 

(2.74) 

(2.75) 
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yc  =  y i  + t i ( y s - y i )  

Zc = t\zs 

( x c  — xr)co8Û — (zc — + xr = + ^2(®^ — 

yc = yj + <2(^5 ~ 

( xc  — x r )  sin û  +  ( zc  — z r )  cos O + z r  — t 2^ s ,  

which can be written as the following linear system of equations: 

10 0 (®i — xs) 

0 1 0 ( y i  -  ya)  0 

0 0 1 -Zs  0 

COS# 0 — sin# 0 («1 - ®5) 

0 1 0 0 (fi — ys )  

sin# 0 cos# 0 -Zs  

XI 

Vl 

0 

Xr cos# - zr sin# - a?r + «i 

y'l 

Xc  

yc  

Zc  

h 

t2 

(2.76) 

Xr sin 9 + zrCoaO — zr 

This linear system can be used in the least squares or total least squares esti­

mators to obtain minimum squared error estimates of the feature coordinates. The 

manner of implementation is very similar to that of the linear sample shift formula­

tion. The major differences are that two parameters and <2) are computed during 
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the solution of the system and that the coordinates of the center of rotation, (xr,yr) 

are required. The film coordinates of the flaws of interest and the coordinates of the 

x-ray source are measured in the same manner described in the sample shift method. 
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3. 2-D VOLUMETRIC FLAW RECONSTRUCTION 

In volumetric flaw reconstruction, the goal is to not only reconstruct the locations 

of flaws but to reconstruct their shape and other properties as well. By definition, the 

flaw consists of some volume of anomalous material, be it a void of gas or an area of 

different density solid such as an inclusion. In the medical field, this subject has been 

addressed vigorously since the early part of the century. The goal is to reconstruct 

areas in the human body under suspicion of abnormal growths or disease. As stated 

earlier, one of the most popular methods of quantitatively reconstructing the shapes 

and locations of flaws is Computed Tomography (CT). This method has gained un­

precedented popularity in the medical field due to its accurate results (approaching 

1 part in 1000) (Kak and Slaney 1988) and its safety to the patient. CT has also 

been applied to the field of Nondestructive Evaluation (Hack et al. 1987; Reimers 

and Goebbels 1983). A major problem with CT, however, is that a large number of 

projections is required by angular scanning around the object. As discussed earlier, 

many objects are not inspectable in certain directions due to their geometry. The 

lack of projection data at some angular positions in the CT reconstruction algorithms 

creates severe artifacts in the reconstructed cross sections. Many efforts have been 

made recently to reduce these artifacts with astounding results. Among these efforts 

include iterative CT reconstruction using a priori knowledge of the part under test 
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(Tam et al. 1989), maximum entropy reconstruction of CT data (Park and Park 

1987, Safaeinili et al. 1991), constrained extrapolation (Kudo and Saito 1988), itera­

tive algebraic reconstruction (Andersen 1989) and Bayesian reconstruction (Hanson 

and Wecksung 1983). There are cases, however, where the inspectability is severely 

limited and only a few projections over a limited angle range may be taken. This 

occurs when a film detector or a radioisotope source is used. In this situation, a 

CT type reconstruction is hopeless. One of the distinguishing features of CT is that 

it reconstructs whatever is present in the x-ray beam regardless of whether it is of 

interest or not. By considering only those features of interest and modeling them as 

geometric figures, the number of projections required to reconstruct the model can 

be very small. This reduction is expected from an information theory standpoint ^ 

as we assume we know something about the shape of a feature (i.e., described by a 

model). Thus, the feature or flaw can be described by a relatively small number of 

model parameters. 

Model-based stereology concepts can be very useful in determining properties of 

volumetric flaws. Much of the work in stereology has been applied to the natural 

sciences to determine geometric properties of objects in 2-D images by assuming ge­

ometric shapes such as ellipsoids of revolution and cylinders (Russ 1986; Elias and 

Hyde 1983; Saxl 1989). These same ideas can be applied to x-ray projection images 

after correction for magnification. However, much of the theory behind stereology 

involves geometric statistics to show the reliability of geometric models when large 

^Information theory specifies that the number of bits required to describe or en­
code a signal depends on its information content. Information is defined as the 
amount of randomness. For a signal that is well known, i.e., less random, a smaller 
number of bits are required. 
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samples of objects are being described. For instance, when modeling cylinders, com­

puted properties such as volume and surface area can be very inaccurate depending 

on the orientation of the cross section through the cylinder. For a large number of 

randomly oriented cylinders, geometrical statistics can show that the estimate of the 

total volume of all of the cylinders approaches the true value, on average. This makes 

sense intuitively through the process of over and under estimating the volumes due 

to the particular orientations. In our case, we don't have the luxury of a large sample 

of objects to reconstruct. Typically, there are one, two, or several Haws within the 

field of view. Some of the measures presented in stereology still can be very useful 

however when we understand the nature of the possible errors and we understand 

the assumptions behind the measures. Combining stereological concepts with the 

stereographic methods of Chapter 2 can be a powerful yet simple way to estimate 

the geometric properties. This will be addressed in the Chapter 5. The technique 

presented in this chapter is also model based, but is considerably more complicated 

and potentially more accurate. 

Ultimately, we wish to reconstruct volumetric flaw-like features with a 3-D geo­

metric model so that equivalent size, volume and location information can be deter­

mined. Performing an accurate 3-D model reconstruction is a complicated problem, 

especially due to the geometry involved and the difficulty in visualizing many of the 

equations. For this reason, it is useful to first derive analogous reconstruction meth­

ods for the 2-D case. Once these are well understood, it is a much simpler matter 

to generalize them to the full 3-D case. In this chapter, an elliptical flaw model is 

used to simulate a cross section through a volumetric flaw. Analytical x-ray projec­

tion models are derived for both parallel and fan-beam (microfocus) x-ray sources. 



www.manaraa.com

77 

Finally, inverse algorithms are implemented to estimate the model parameters based 

on simulated data using an exact solution and least squares solution. 

3.1 Discussion of Geometric Model 

In selecting a model for a volumetric flaw, there are many issues to consider. 

Most importantly, the model must accurately describe the nature of the flaw. In 

addition, the model should be robust enough to accurately describe a wide variety of 

commonly occurring volumetric flaws. The model should also be simple enough so 

that it can be visualized by its parameters. In addition, it should be simple enough 

that the inverse problem is numerically tractable. In selecting a geometric model, it 

should be pointed out that we are considering the flaws of interest to be homogeneous. 

This relaxes the requirement that the flaw model have a spatial distribution in 3-D. 

Thus, we can select a model that is essentially a surface and use this surface as the 

flaw boundary. 

One of the first models that comes to mind is a polygon. Some researchers 

have modeled objects in scenes using polygons and three-view stereo images (Hung 

et al. 1989) with good results. One of the problems involved with polygonal models, 

however, is the correspondence problem which enters through the requirement of 

matching polygon vertices. In addition, the complexity of the model equation is very 

high. Granted, a general n-sided polygon can well approximate many convex flaw 

distributions, however, it is difficult to write general analytical expressions for the 

forward projection model. 

A three-axes ellipsoid is a simple geometric surface that can take on a wide variety 

of shapes depending on its parameter values. The parameters are the principal axes 
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lengths, the orientation angles and the location of the center. By varying the ratios 

of principal lengths, various shapes ranging from long thin needles to flat pancakes, 

tô spheroids, can be obtained. In addition, the analytical equations involved in 

developing a general forward projection model are reasonable. For these reasons, the 

ellipsoid was chosen as the geometric model for volumetric flaws. In this chapter, we 

are concerned with arbitrary ellipsoid cross sections (which are ellipses (Gellert et al. 

1975)) to simplify the mathematics. 

3.2 Forward Projection Model 

The forward projection model for the elliptical flaw can be thought of as the 

model of the signal that would be present on the x-ray detector in the presence of an 

elliptical flaw. Actually, this is an oversimplification since we will neglect the physics 

of the x-ray generation and detector output. What we are considering here are the 

the path lengths of the x-rays inside and outside the material. This process is the 

primary cause of a signal in the presence of a flaw. The absence or presence of some 

anomalous material causes a change in the overall x-ray attenuation as compared 

with the attenuation through other defect-free regions, giving rise to a change in the 

detector signal. This change is called contrast and is generally defined as 

where I is the average background intensity and A/ is the change in the intensity on 

the feature or region of interest (Macovski 1983). Assuming a single homogeneous 

elliptical flaw in a nonattenuating background medium the detector signal is related 

^Although an unrealistic situation in practice, this simplifies the mathematical 
development. The detector signals can be processed to account for this assumption. 
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x-ray source 

g 

Projection of ellipse 

Detector Position 

Figure 3.1: Detector signal vs. position for a homogeneous elliptical flaw 

to the path length of the x-ray wave inside the ellipse. Figure 3.1 shows the detector 

signal versus position for an example ellipse and a point x-ray source. 

The value of the signal at any position on the detector is also related to the Radon 

transform of the object. The Radon transform is the line integral of the object's x-ray 

attenuation coefficient function along a certain path defined by an orientation angle 
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Projection P(ti) 

Figure 3.2: Geometry used in the Radon transform (from Kak and Slaney, 1988) 

and a detector position. The Radon transform, given by (Deans 1983) 

«(/(•". Wl = P»(t) = /("•. v¥'- (3-2) 

assumes that all x-rays are parallel with their paths perpendicular to the detector 

line, as shown in Fig. 3.2. 

Here, f{x,y) is the object attenuation coefficient function, 6 defines the orienta­

tion of the detector, t specifies the position on the detector, and ds is the differential 
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x-ray path length. In CT reconstruction, the Radon transform is the quantity that is 

measured. The object is reconstructed by inversion of the Radon transform, yielding 

/(x, jf). In the model based reconstruction presented here, the Radon transform of 

the object under test is also measured (albeit at many less Û values), but an ellipti-

cally bounded constant is assumed for f(x, y) and is reconstructed on a least squared 

error criterion. 

The attractiveness of using the Radon transform in this type of reconstruction 

is that it provides a useful analytical formalism to the forward projection model and 

it has certain properties which allow for easy translation and rotation of the object. 

We begin by deriving the Radon transform of an elliptically bounded constant 

centered at the coordinate origin with its principal axes aligned with the coordinate 

axes as shown in Fig. 3.3. The elliptical function is given by 

The line representing the detector position for evaluation of the Radon transform 

is given by the t axis and is specified by the line having equation y = x tan 9. The 

equations of the lines representing the x-ray paths through the ellipse are thus given 

where bo depends on the location of t. For a given detector position, bo is computed 

by setting x = tcos6 and y = tsin9 in Eq. (3.4). We have 

0 otherwise 
(3.3) 

by 

y = —xcot9 + bo (3.4) 

<sind = —( cos ̂  cot 0 4- bo, (3.5) 

and after some manipulation, 

bo = tcsc0, (3.6) 
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Prototype ellipse, 

m 

Figure 3.3: Geometry for computing the Radon transform of the prototype ellipse 

and 

y = -xcotô + t esc 6. (3.7) 

Because f{x,y) is constant within the ellipse, the Radon transform is simply the 

length of the x-ray path within the ellipse. This is computed geometrically as follows. 

We have 

j/2 = 6^ elliptical boundary (3.8) 

y = —xcot6 + tCSC6 x-ray line (3.9) 

The points of intersection of the ellipse with the x-ray line are found by equating Eq. 

(3.8) to the square of Eq. (3.9), yielding 

2 
6^ — 6^^ ̂  {—xcotO + tCSC0)^. (3.10) 
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This results in the following quadratic equation; 

^cot^ ̂  -|-x(—2fcot^csctf) + <^c8c^tf — 6^ = 0. (3.11) 

The two solution points are given by 

{2t cot $ CSC i y cot^ 0 csc^ $ — 4 + cot^ 0^ (/2 csc^ 0 — iy^) 

(^ + cot2^) 
^1.2 = ^ 

(3.12) 

The x-ray path distance, d, is projected onto the x axis by 

dx = X2 — xi = daitiO. (3.13) 

Substituting the two solutions of Eq. (3.12) into Eq. (3.13) and solving for d, we 

obtain 

When Eq. (3.12) yields a single solution or imaginary solutions, it means that the 

x-ray path line is either tangent to the ellipse or not intersecting it at all. In writing 

the expressions for the projection, as in Eq. (3.14), we assume that the solutions are 

real. Otherwise, we define the projection to be zero. Henceforth, all expressions for 

the projections make this implicit assumption to avoid the use of indicator functions. 

3.2.1 Rotation and "translation of the Model 

In order to derive the projections of the elliptical model for arbitrary location 

and orientation, rotation and translation properties of the Radon transform must be 

used. We begin by rewriting the definition of the Radon transform as 

R [/(®i Î/)] =  5(^ ̂ )  =  /  f  f{x,y)6{x cosd-k-y sin 6— t)dxdy. (3.15) 
J—OO J—00 
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Notice that the delta function is unity on the x-ray line and zero everywhere else, 

causing the integral to sift /(x,y) on the x-ray line. 

The translation property of the Radon transform can be derived by considering 

an object function, f{x, y) to be shifted by amount (a:©, yo). The Radon transform 

of the shifted object is 

g{t^ 9) = f f f{x — xo,y — yo)S{x cosd + y sin 9 — t)dxdy. (3.16) 
J—OO J—OO 

Substituting u = x — xo and v = y — yo^ Vfe have 

g{t,9) = : f  f  f{u,v)S{u + xocoa9+ v + yosin9-t)dx dy (3.17) 
J—OO J—OO 

= J ^f{u,v)6{ucoa9+ vsin9 — (3.18) 

(t — xo cos 9 — yo sin 9))dudv 

= g{i - xocos9-yosin9,9). (3.19) 

Thus, the Radon transform of a shifted ellipse with center {xo, yo) can be expressed 

by substituting the quantity {t — xocqs9 - yoain9) for t in Eq. (3.14). This yields 

. 2ab\/ 62 sin2 9+ a^ cos^ 9 - (t - xocoa9 - yo sin 9)^ 

64sin2« + a2co82« ' 

The rotation property can be derived in a similar fashion. We begin by writing 

the Radon transform in polar form as (Kak and Slaney 1988) 

R[/(®> Î/)] = gir, '^) = Jq f_^ /(n cos{9 -4)- t)rdrd<f>. (3.21) 

Rotating the object function by 9ot we have 

^(r, ̂ ) = f(r, <f> + 9o)6{r cos(9 -<(>)- t)rdrd<l>. (3.22) 
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Let a ss <l>-\-9o' Then 

^(r, = / / f{r,a)8{rcx>s{9-\-9o-'Ot)—t)rdrd<}> (3.23) 
JO J—00 

= p(r, 0 + 9o). (3.24) 

The Radon transform of the shifted and rotated ellipse must be derived with 

care. The order of application of the translation and rotation properties is important 

as the rotation takes place about the coordinate origin rather than the ellipse center. 

One usually wishes to first establish an ellipse orientation and second, translate the 

oriented ellipse to a desired location. If the operations are performed in reverse, 

the prototype ellipse is translated to a desired location and then rotated about the 

coordinate axis. In this case, we take the former approach by first substituting (O+Oq) 

for 0 in Eq. (3.14) and then applying the translation substitution. This yields 

The forward projection model using the Radon transform so far has assumed 

a parallel beam x-ray source geometry. The type of source considered in this work, 

however, is a microfocus or point x-ray source in which the x-ray beam spreads out 

like a fan in any 2-D plane. Thus, the projection model given by Eq. (3.25) must 

be modified to account for the beam spreading out. The Radon transform can still 

be used in deriving the projection at any detector position by making a basic, but 

important observation: Any fan-ray can be thought of as a parallel ray for some other 

R[/9o(«,y)] = 

3.3 Fan-Beam Conversion 
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detector orientation and position. If we can determine this orientation and position, 

the Radon transform can be computed, yielding the proper projection. Consider 

the fan-beam geometry shown in Fig. 3.4. The detector has orientation, 9 and 

the fan-ray shown intersects the detector at point < z= Line Lji represents the 

x-ray path orientation used in the conventional Radon transform for that detector 

position. If we re-orient the detector line by angle yd, we have the new detector line. 

Notice that for this detector orientation, the fan-ray would be the x-ray path for 

the R^on transform evaluated at We therefore require that an equivalent 

detector orientation and position be computed for each fan ray to be used in the 

Radon transform, yielding the proper projections. For an original detector position, 

<1, and orientation, 6), the fan angle, 7 is given by 

7 = tan~^ (3.26) 

where D is the perpendicular source-to-detector distance. The new detector orienta­

tion is 

= 7 + (3.27) 

and the new detector position is 

t'l = ti cos 7. (3.28) 

Applying the detector transformations of Eqs. (3.27) and (3.28) to Eq. (3.25) yield 

the forward projection model for an arbitrarily oriented and located elliptical flaw 

with fan-beam source geometry. 



www.manaraa.com

87 

x-ray source 

fan ray 

Figure 3.4: Fan-beam x-ray source geometry 
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4a^6^[6^ sin^(7 •¥9 + 6o) + a^ cos^(7 + 0 + Oo)] 

[62 sin^(7 + 0 + 0o) + 008^(7 + 9 + 9o)]^ 

4<i^fe^[< cos f — xp co8(7 •¥9) — yo 8111(7 + 

[6^ sin2(7 + 0 + 0q) + co82(7 + ̂  + 

è 

or, replacing 7 by tan""^ jj, 

(3.29) 

g(t^9) — 
Aa^b^ [6^ 8in^[tan ^(^) + ^ + 0o] + cos^^an ^{'^) + 9 + #0]] 

|6^sin^[tan ^(^) + ^ + ^o] + û^cos^[tan H^) + ^ + ^o]] 

4a^6^{tco8tan""^( jy) — aocos[tan~^( jy) + 0] — yosin[tan~^( jy) + 9]}^ 

|i^sin^[tan ^(^+ d + do] + a^cos^[tan ^(^) + ̂ "H^o]] 

(3.30) 

This model provides a compact, analytical expression for generating projections 

of ellipses having desired parameters at any arbitrary detector orientation. It also 

accounts for the fan-beam x-ray source, allowing for the effects of radial divergence 

of the x-ray beam and magnification to be seen. Example realizations of the forward 

projection model for various elliptical parameters are shown in Figs. 3.5-3.10. In 

each figure, the horizontal axis is the detector position and the vertical axis is the 

projection value, g{t,9), given by Eq. (3.30). In Fig. 3.5, the skewness is caused 

by the offset of the ellipse as well as the nonzero orientation angle. In Fig. 3.6, 

the skewness is caused by the nonzero orientation angle alone. Figure 3.7 illustrates 

a symmetrical projection as the offset with respect to the detector origin and the 

orientation angle are both zero. Figure 3.8 illustrates the effect of magnification. 

The extent of the projection has increased as the ellipse has moved closer to the 
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source (i/o=12 as opposed to yo=10). Figure 3.9 shows the effect of a decrease in 

magnification as the ellipse has moved away from the source (yo = 6). Figure 3.10 

shows the projections plotted together for ease of comparison. 

3.4 Reconstruction - Inversion of the Projection Model 

Performing the reconstruction of the elliptical flaw model involves the inver­

sion of the forward projection model from the measured projection data. Obtaining 

projection data from the detector measurements involves using a detector model to 

convert the detector signal into x-ray intensity. The intensity can then be converted 

to projection values which are the actual Radon transform values of the ellipse. In 

this chapter, however, we will assume that the projection values are available for use 

in the model inversion procedure. The detector models and measurement conversions 

will be discussed in Chapter 5. 

3.4.1 Noiseless Reconstruction 

In a noiseless situation in which the model perfectly describes reality, the recon­

struction procedure amounts to finding the elliptical parameters which correspond 

to the measurement data. While this is not the situation in practice, it is useful to 

simulate in order to understand the complexity of the inversion problem from a nu­

merical standpoint. In the forward projection model, we have 5 unknown parameters, 

an explanatory variable and two known parameters. The unknown parameters are 

a, b, xo, yo, and 6o\ the known parameters are 9 and D, and the explanatory vari­

able is t. For perfect data, the parameters can be computed from five observations. 

The computation of these parameters is complicated by the fact that the projection 
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Figure 3.5: Elliptical projection 1 
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Figure 3.7: Elliptical projection 3 
(a = 8 6 = 4 xo = 0 yo = 10 6o = 0 A = 0 2) = 20) 
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(a = 8 6 = 4 xo = 0 yo = 12 6o = 0 0 = 0 D = 20) 
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model is highly nonlinear and there is no good general method for solving systems 

of nonlinear equations (Press et al. 1988). Solving the system of equations requires 

the parameter space to be searched for the points satisfying the the model. This can 

be thought of as setting each equation in the system equal to zero, mapping out all 

of the zero-contour hypersurfaces for each equation and finding the common point(s) 

of intersection. For the five-dimensional parameter space here, this is a very difficult 

prospect unless some a priori knowledge is used to narrow the search. A commonly 

used method for solving nonlinear systems of equations where a priori information 

about the parameters is known is the Newton-Raphson iterative method (Press et 

al. 1988; Gerald and Wheatley 1984). The Newton-Raphson method linearizes the 

system of equations about a fixed point and computes a correction vector, taking the 

point closer to the solution to the system. 

We will develop this method by letting the vector x contain the unknown pa­

rameter  va lues .  For  nota t ional  convenience ,  we  ca l l  these  parameters  x i ,x2 , . . . ,x^  

and define the vector x as 

a XI 

b X2 

Xo — X3 

Vo H 

9o 
. . 

The nonlinear system of equations is written as 

fl = ̂ (<1»^;*)-Pl (*l»^) = 0 

/2 = x) - P2(<2» ^) = 0 
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/3 = ^(<3» *) - PaCsi ̂ ) = 0 (3.32) 

U = -P4('4»^) = 0 

/s = 5'('5»^»*) -P5('5»^) = 0 

where g  is the forward projection model equation and P i{t{ , 9 )  is the projection value 

measured at detector position t,*. The Taylor series for each equation can be gener­

alized as 

/,(x + fx) = /,(x) + + O(fx^), (3.33) 
j=l 

so that 

/•(*) + E " »• (3.34) 
j=l 

The correction vector, fx is computed by solving the linear system 

P(<r^) - 5i(<p^;x) = (3-35) 
i=l 

The solution will either converge to a set of parameters based on some convergence 

criterion or not converge if no solution exists nearby. The solution after convergence 

in general is not unique. There are situations where a permutation of the parameters 

yields a root of the system, as will be discussed later. However, it is believed that with 

the exception of cases of permuted parameters and physically unrealizable parameters 

(such as negative axes lengths), the solution is unique. This previous statement is 

made from experience only with no mathematical proof, although it would be useful 

to investigate the uniqueness in future research. 

Applying the Newton-Raphson method to the inversion of Eq. (3.30), the par­

tial derivatives are evaluated analytically and specific values are computed at each 

iteration by substituting the current parameter vector into the analytical expressions 
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Table 3.1: Convergence summary of simu­
lated reconstruction 

iteration a b Xo Vo 9o 
initial 1.10 1.90 5.90 0.00 0.40 
1 1.74 1.70 0.07 4.00 0.74 
2 2.02 1.94 0.05 3.76 -7.12 
3 1.87 1.86 0.04 4.33 -4.27 
4 1.64 1.91 0.07 4.68 9.78 
5 1.76 1.62 0.09 4.91 10.3 
6 1.83 1.79 0.01 4.74 8.81 
7 1.91 1.74 -0.04 4.71 13.6 
8 1.73 1.82 -0.06 4.82 12.5 
9 1.85 1.50 -0.04 4.94 12.2 
10 2.28 1.59 -0.09 4.27 12.8 
11 2.50 1.54 0.07 3.89 12.5 
12 2.51 1.50 -0.01 3.96 12.6 
13 2.50 1.50 0.00 4.00 12.6 

for the derivatives. The complicated nature of Eq. (3.30) makes the program rather 

complex as there are many applications of the chain, product, and quotient rules in 

deriving the derivatives. The method was implemented and tested with a simulated 

elliptical projection. The ellipse used for the projection had the parameters, a = 2.5, 

b = 1.5, Xq = 0.0, yo — 4.5, 6o = 0.0, with D = 8.0 and 9 — 0.0. Table 3.1 sum­

marizes the iteration process to the correct solution starting with the initial guess of 

a — 1.1, 6 = 1.9, Xo = 0.3, yo = 5.9, 9o = 0.4. 

A plot illustrating the convergence properties graphically is shown in Fig. 3.11. 

Notice that the final value for Oq is the proper value because of a 4;r bias. This brings 

to light an interesting situation. In the parameter space there is no unique solution 

to the system of equations. This is due to the periodic nature of the trigonometric 
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functions as well as cases of equivalent ellipses with different parameters. One obvious 

example of this case is (a = 2, 6 = 1, 6 = 0) and (a = 1, 6 s 2, 0 = 7r/2). We need 

not concern ourselves with this problem because with either solution, the ellipsoid is 

equivalently described. 

The previous exercise in inverting the forward projection model was motivated 

by an interest in the numerical difficulties associated with the inversion of such a 

compl ica ted  nonl inear  sys tem of  equat ions .  Other  numer ica l  tes t s  have  been  run  in  

which the solution vector does not converge. One of the major causes of nonconver-

gence is the choice of initial values that are grossly inconsistent with the measurement 

data. For instance, when the routine is run with initial values that produce a zero 

projection value at every measurement location, the parameter vector wanders aim­

lessly during the iteration process. In this simulation, it was found that the yo initial 

value was very critical. An initial value greater than 5.9 or less than 3.0 caused 

nonconvergence. A related problem is the fact that the iteration process can take 

the parameter vector outside its region of support. In this situation, the projection 

model is undefined for a given set of parameters and measurement location. This 

occurs when the quantities under the radical sign of Eq. (3.30) become negative. 

This problem can sometimes be overcome by setting the model equal to zero. Other 

times, convergence will not be reached. 

The key to convergence is to use initial estimates that are sufficiently close to 

the true values and that are somewhat consistent with the measurement data. A 

good rule of thumb is that the initial values should be within ±50% of the true value. 

This is a realistic goal because experience and a priori knowledge of the measurement 

geometry can allow meaningful initial values to be calculated. 
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Figure 3.11: Graphical illustration of convergence properties 
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The major goal of the previous section has been to show that the forward pro­

jection model of Eq. (3.30) is invertible, given noiseless measurement data and initial 

values that are sufficiently close to the true values. In the next section, we consider 

noisy projection data and apply least-squares parameter estimators to the problem. 

3.4.2 Reconstruction Using Noisy Data 

In the real world, all measurement data contains noise. Noise is caused by many 

different processes and is defined as any component of the signal not capable of be­

ing described deterministically. Among the sources of noise are the x-ray generation 

itself, the noise in the x-ray photon interaction with the object under test, noise in 

the detector, noise in the digitization process, and noise in the measurement process. 

In this section we assume noise processes consisting of additive Gaussian noise, mul­

tiplicative signal-dependent noise from a Gaussian distribution and Poisson counting 

noise. The additive Gaussian noise is used for simulation purposes and the multi­

plicative and Poisson noise processes are used to model the film grain noise and the 

x-ray generator noise, respectively (Kuan et al. 1985). 

The reconstruction problem in the presence of noisy measurement data amounts 

to finding the best set of ellipse parameters that satisfy the system of model equations. 

The term best refers to those parameters which minimize the total squared error 

between the predicted and measured projections. We rewrite the system of projection 

equations as 

Pi{ti,0) = hi{ti,9) + ui{ti,e) (3.36) 

where p is the measured projection, h is the true projection, and u is an error term. 

The term best is used because there are an infinite number of possible parameter 
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vectors which satisfy Eq. (3.36), depending upon The least-squares 

estimator finds the parameter vector which minimizes ||u||^. When u is distributed 

NI(0,Zuu), then the least squares estimator is the maximum likelihood estimator 

(Fuller 1987). The error term in Eq. (3.36) is not necessarily Gaussian distributed 

or even random. It could be deterministic if there is some systematic measurement 

error or modeling error. Given that we can't tell for sure the distribution or cause 

of u, it still makes sense to minimize it, and because of the convenience of the least 

squares method, we apply it knowing that it is probably not optimal. 

Computing the nonlinear least squares solution is very similar to finding the 

common roots of the model equations in the Newton-Raphson method. In this case, 

we simultaneously find the roots of an overdetermined system of the derivatives of 

merit functions. In least squares, the merit function is 

X"(x) = E 
1=1 

^ ""Pt - j(<t>x) 

< 1̂ 
(3.37) 

where x is the parameter vector, is the measured projection, g is the model-

predicted projection, and is the standard deviation of the \th measurement, taken 

from the diagonal of Suu. Minimizing Eq. (3.37) is equivalent to finding the roots 

of its first derivatives. This being a nonlinear problem, we make the approximation 

that can be approximated by a quadratic surface sufficiently close to the roots 

(Press et al. 1988). We write 

X^(x 4- 6x) » c 4- d. fX 4- ^6x H 6x (3.38) 

where 

c = x^(x) (3.39) 
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d » =  1 , . . . ,5  (3 .40)  

H  =  t  =  l , . . . ,5  ;  i  = l , . . . ,5 .  (3 .41)  
(JW^vXJ 

Minimizing (3.38) with respect to Sx yields 

0 = d + H 6x (3.42) 

or 

H 6x = -d. (3.43) 

This can be written as the following system of linear equations: 

The solution, Sx is added on to the current value of x at each iteration until con­

vergence is reached. This method is known as the inverse Hessian method and is 

primarily used only when Eq. (3.37) is well approximated locally by a quadratic 

surface. 

A method of minimizing where the function does not locally approximate 

a quadratic surface is the steepest descent method (Press et al. 1988). In this 

algorithm, we take a series of steps down the gradient of the merit function, each 

time adding a correction vector to the current parameter vector: 

x = x-Sx (3.45) 

where the components of the correction vector are 

Sxi = (3.46) 
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The minimization technique implemented in this dissertation is the Marquardt 

method (Marquardt 1963; Pankratz 1983; Press et al. 1988). This method compro­

mises between the two methods previously discussed. It combines the best features of 

the inverse Hessian and steepest descent methods depending how well the merit func­

tion is approximated by a quadratic surface. Marquardt established logical method of 

computing a value for in the steepest descent method as well as a way of switching 

smoothly between the two methods during the iteration process. The constant used 

in the gradient method is selected to be 

where is the ith diagonal component of the Hessian matrix, H and A is a constant. 

The two methods are combined by defining a new Hessian matrix given by 

4, = + A) (3.48) 

B'ij =Hij (3.49) 

The value of A determines which method is being used in the search for the optimum 

X. From (3.44) we have the linear system of equations 

/ dy^(x) 
Yl H^jSxj = —7| t = 1,..., 5. (3.50) 

;=1 

We see that when A is large, the matrix, H' is diagonally dominant with the diagonal 

term approximately equal to l/&^, enforcing the steepest descent method. When A 

is small, the method defaults to the inverse Hessian method. The value of lambda is 

chosen based upon a comparison of the residual error with that of the previous step. 

If the residual error goes up, A is increased by a factor of 10 and the correction vector 
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is recomputed. If the residual error goes down, A is reduced by a factor of 10 and the 

correction vector is applied to the current parameter vector (Press et al. 1988). This 

iteration process is repeated until convergence is reached. Convergence is difficult 

to guarantee with this method, even though it is extremely efficient at finding the 

optimal value very quickly. As with all nonlinear search algorithms, convergence 

depends heavily on the initial value selection. 

The method has been tested with several sets of noisy simulated data. Again, 

it requires initial estimates which are reasonably close to the true values for conver­

gence. In addition, there can be problems with the solution causing an inconsistency 

between the region of support and the measurement data. These problems will be 

discussed in the next section. Figure 3.12 shows a simulated noisy projection of an el­

lipse having parameters, (a=2.50, 6=1.50, xo=0.00, yo=4.00, ^o=0.30), and detector 

parameters, Z)=:8.00, ^=0.00. The noise used was from the distribution NI(0,0.02) 

and was additive. The Marquardt nonlinear optimization technique was run on this 

data set of 200 projection values using initial parameters, (a=1.00, 6=0.50, a;o=0.50, 

2/0=5.50, ^o=0.00). After 12 iterations, the routine converged to the parameters 

(a=2.41, 6=1.50, xo=0.00,2/^=4.16, 0o=0.33) with a value of 191.0 and a resid­

ual error of 0.02. A graphical plot of the noisy data with the projection of the solution 

parameters and the initial parameters is shown is Fig. 3.13. The smaller dashed curve 

represents the projection of the initial parameters. The dotted curve represents the 

measurements, and the solid curve is the projection of the optimally At parameters. 

The convergence properties of the reconstruction are shown in Fig. 3.14. Each line 

in Fig. (3.14) plots the parameter value versus the iteration number. All of the 

parameters are fairly stable in the convergence process with the exception of 9. The 
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Figure 3.12: Plot of elliptical projection with Gaussian noise added 

9 parameter tends to jump around due to its periodicity. This can be avoided simply 

by performing a modulo tt. 

When the measurement errors are normally distributed, the uncertainties of the 

parameters can be found by examining the parameter covariance matrix. The matrix 

is computed as (Press et al. 1988) 

C = |H-1. (3.51) 

The estimated standard errors of the parameters, obtained from the diagonal ele­
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ments of the covariance matrix were (<7a=0.124, ^^=0.001, <Txo=0.001, <ryo=0.301, 

<Tg^=0.006). 

The goodness of fit for the model can be assessed by through the chi-square 

goodness of fit test. The tail probability of the chi-square distribution with 195 

degrees of freedom and a variate of 191.0 (the value of from the optimization) is 

0.568 indicating a good fit of the model. The (1 — f )zlOO% confidence interval for 

each parameter can be computed as (Press et al. 1988) 

Clxi = Xi ± (3.52). 

where i/ is the number of degrees of freedom (here i/ = 5) and is the variate from 

the xB distribution with 1-P tail probability. The value of Axy can also be thought 

of as the allowable change in xB which would encompass 95% of all realizations of 

that parameter from estimations using the distribution of measurements. For v = 

5 df, Axy = 11.1. Thus for this simulation, the 95% confidence intervals for the 

parameters are: 

Cla = 2.41 ± 0.41 

C/5 = 1.50 ±0.00 

CIxo = 0.00 ± 0,00 

Cly0 = 4.16 ± 1.00 

= 0.33 ± 0.02 

The interpretation of the covariance matrix as uncertainties on the parameters 

breaks down in the case of nonnormal measurement errors. Because the measurement 
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errors in reality are not normal, one way of computing confidence intervals for the 

parameters is by Monte-Carlo simulation. This method uses multiple estimations 

from different sample realizations (from the known measurement noise statistics) of 

the measurements. Each sample realization is generated using the estimated param­

eters as nominal values and a noise process using random number generators. The 

distribution of parameters is then plotted as a histogram or scatter plot and the vari­

ability is used to find a confidence interval. This analysis is only valid when the data 

fits the model well. The model fit is evaluated in a similar manner by comparing the 

nominal value to the distribution of values from the Monte-Carlo simulation. 

(Note: is not distributed as a chi-square statistic. We call it "x squared".) If the 

nominal value is not way out in the tail of the distribution, the model is deemed 

adequate. 

This type of Monte-Carlo simulation has been performed for the case of a com­

bination of multiplicative, signal dependent Gaussian noise and Poisson noise. In 

this case, the covariance matrix does not have any absolute meaning as to the uncer­

tainties of the various parameters. One could, however, in principle derive estimates 

of the parameter variances by writing the likelihood function for the measurements 

with this type of noise. This type of analytical solution is not practical, however, 

because of the complicated nature of the noise processes. Even the simple propaga­

tion of errors formula cannot be used in estimating the change in a parameter caused 

by measurement errors because an analytic expression for the parameters as a func­

tion of the measurements does not exist. For 250 sample measurement realizations 

with the above noise distributions, the parameter distributions are shown in Figs. 

3.15-3.19 in both histogram and scatter plot form. These figures show the variability 
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of the estimated parameters caused by variability in the measurement data. In each 

figure, the appropriate parameter is plotted against the value of obtained from the 

estimation. In addition, the corresponding histogram of the appropriate parameter 

is shown. The nominal parameter values were (a = 2.40, b = 1.50, Xo = 0.00, yo = 

4.16, 0o = 0.32) and were obtained from an initial estimate of a simulated noisy data 

set having true parameters (a = 2.50, b — 1.50, xq = 0.00, yo = 4.00, Oo = 0.30). 

Signal dependent multiplicative noise f{i)u{i) was added to the data, where u(t) was 

taken from an NI(0,0.05) distribution. The relation between the observed value, p(i), 

and the true value, /(») is given by 

p(0 = /(O + /(<•) • "(oi (3.53) 

This type of process is useful in modeling the film grain noise associated with a film 

detector (Kuan et al. 1985). The value, p{i) was then used in a Poisson distribution 

with mean p(i) to generate the simulated measurement. The distribution of the 

Poisson process is given by 

where is the probability of the emission of k photons in a specified time interval 

and p(t) is the average number of photons emitted in that interval (Macovski 1983). 

A scaling factor, A, of 0.2 was used in the Poisson process to control the noise level. 

A standard random number generator was used to pick variates from the process 

(Press et al. 1988). 

The nominal value for was 35.5 which is well within the distribution of 

shown in Fig. 3.20 (as it should be). The 95% confidence intervals were computed 



www.manaraa.com

112 

by bounding the plots to include 238 of the parameter values while excluding 12 or 

6 on each side. The confidence intervals are: 

a = (2.15,2.65) 

6 =(1.49,1.51) 

xo = (-0.01,0.008) 

yo = (3.75,4.55) 

00 - (0.27,0.38) 

3.5 Numerical Difficulties 

There are two basic difficulties associated with the numerical estimation of the 

elliptical parameters. They are the selection of initial values for the parameters 

and the inconsistency between the region of support and the measurement data. 

As with most nonlinear iterative methods, initial value selection is crucial to the 

performance. If the initial values are not selected sufficiently close to the solution, 

the routine may not converge or it may converge to some other undesirable locally 

optimum value. Fortunately, with x-ray projections, initial parameter values can be 

estimated based on knowledge of the inspection geometry as well as measurement 

pre-processing. The inspection geometry determines which parameters values are 

impossible or unimportant. For example, if the extent of the part under test in the 

y direction is 10 cm to 15 cm, it would be foolish to choose and initial value of yo to 

be 20 cm. In addition, knowledge of the expected flaw sizes can help constrain the 

initial values of a and b. This type of knowledge can also be used to constrain the 
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Figure 3.15: Histogram and scatter plot of a from 250 sample realizations 
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Figure 3.16: Histogram and scatter plot of h from 250 sample realizations 
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Figure 3.17: Histogram and scatter plot of XQ from 250 sample realizations 
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Figure 3.18: Histogram and scatter plot of yo from 250 sample realizations 
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Figure 3.19: Histogram and scatter plot of OQ from 250 sample realizations 
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Frequency 

Figure 3.20: Distribution of the merit function for 250 sample realizations 

parameters during the iteration process. 

A good method for initial value selection is the use of measurement data preproc­

essing. This involves examining the measured projection data to gain insight into the 

parameter values. In particular, stereographic analysis can be used to determine the 

rough location and size of the flaw. This requires at least one extra projection but 

the information gained is extremely valuable. The approximate location is calculated 

by stereographically reconstructing the approximate centroid of the flaw. With volu­

metric flaws, there is more susceptibility to correspondence errors, but approximate 

results are acceptable for use in the reconstruction algorithm. Once an approximate 

location is known, an approximate magniflcation can be computed as 

m = —, (3.55) 
YO 
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where D is the source-detector distance and yo is the flaw-to-source distance. The 

estimated initial value for one of the principal axes lengths is thus 

à = '"""'-'min, (3.56) 

where tmax and tf^in arc the boundary coordinates of the flaw on the detector. The 

other principal axis length is estimated using the measured projection values. The 

computation of the projection values from the detector signal will be discussed in 

Chapter 5. 

The second major problem associated with numerically estimating the param­

eters is the potential inconsistency between the region of support for the current 

parameter iteration and the measurement data. The region of support is defined as 

the region of the detector that the projection model exists for a given set of param­

eters. This becomes clear when we examine the forward projection model given by 

Eq. (3.30). For a fixed set of parameters, there exists a bounded region tmoz) 

such that git^9) is real. Outside this region g{t^Q) is imaginary, but in practice it 

is set to zero to be consistent with the physical meaning (i.ç., the projection of the 

ellipse along rays not intersecting the ellipse is zero). We formally define the region 

of support for the ith set of parameters as 

5j = {( : ti max)' (3.57) 

We define the measurement region as 

Sm = {( : iffi min — ^ ttiax) (3.58) 

where and tm max are the maximum and minimum t values used in the 

measurement data. Sm is not associated with any particular parameter value because 

it is a fixed region defined by the measurement process. 
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The problem arises when Smf^S^ ^ 5m • This means that every element in Sm is 

not defined for every element in 5,*, creating a problem in the numerical evaluation of 

the model at points in 5m • This inconsistency can occur at the start of the iteration 

process from the initial values, or it can occur during the iteration process as the 

parameter vector changes. The problem has been sidestepped by setting the model 

equal to zero at these points. Even though the model does not mathematically predict 

zero at these points, it works well as evidenced by the convergence in the simulation 

of Fig. 3.14. In the case of this simulation, the region of support for the initial 

parameter values is (-1.5,5) which does not contfun all measurement points. 

Finally, some comments should be made about the computational requirements 

of the reconstruction algorithm. The reconstruction software has been implemented 

on a Stellar GS-1025 graphics supercomputer using the C programming language. 

It is rated at a peak performance rate of 40 MFLOPS when the code is vectorized. 

When the program is run using 200 measurement points with no vectorization, each 

iteration takes approximately 10 seconds of CPU time. When run using optimized 

math functions, each iteration takes approximately 2 seconds of CPU time. 
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4. 3-D VOLUMETRIC FLAW RECONSTRUCTION 

In the previous chapter, we considered reconstruction of a 2-D elliptical flaw 

model. This was done as a precursor to 3-D reconstruction to gain insight into the 

geometry and numerical difficulties associated with the much more complicated 3-D 

problem. It will also ultimately be used as a component of the 3-D reconstruction. 

In 3-D reconstruction, we model the volumetric flaw boundary as an ellipsoidal sur­

face. We take basically the same approach as the 2-D reconstruction; we formulate 

an analytical forward projection model and attempt to invert the model from the 

measurement data. 

The ellipsoidal prototype flaw model is given by 

where A, J5, and C are the semi-principal axes lengths. The forward projection 

model for the ellipsoidal flaw is derived using the 3-D Radon transform. The Radon 

transform of the prototype ellipsoid is considerably more complicated than that of 

the ellipse due to the third dimension, but it is computed basically in the same way 

as the 2-D case. 

We initially deflne the measurement plane in.which the x-ray projections are 

measured as the x-z plane of a (z,y,z) right-hand Cartesian coordinate system. This 

1  > + 1 ^ + ^  

0 elsewhere 
(4.1) 
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parallel x-rays 

y 

Figure 4.1: Illustration of parallel-beam measurement system 

is illustrated in Fig. 4.1. We also assume parallel beam x-rays impinging normally to 

the detector plane. The line of the x-ray impinging on point (xo,zo) on the detector 

plane can be described by the intersection of the two planes 

X — Xo (4.2) 

y — I/o- (4.3) 

We now allow the detector plane to be arbitrarily oriented by performing three 

rotations of the coordinate system. The first is a counterclockwise rotation, 0, about 

the z axis yielding the 3', z) axes. The second is a counterclockwise rotation, 7, 

about the axis yielding the (<', 5, r') axes. The third is a counterclockwise rotation, 
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0, about the s axis yielding the ((, a, r) axes. The corresponding measurement plane 

in the rotated system is the t-r plane. The transformation of coordinates for each 

rotation can be written as follows: 

(4.4) 

' t' cos 0 sin é' 0 X 

/ — sin Ô cosO 0 y 

z 0 0 1 
• 

z 

' t'' 1 0 1 ' t'' 

s 
= 0 COS 7 sin 7 s' 

/ 0 — sin 7 cos 7 z 

t cos ijf 0 sin 0 ' / " 

s 
= 0 1 0 3 

r — sin 0 cos ijf / 
The composite transformation can be written as 

«11 «12 «13 

«21 «22 *23 

_*31 «32 «33 

where 

t 

3 — 

r 

H
 

y 

z 

(4.5) 

(4.6) 

(4.7) 

ail = cos^cosO + sin^sin'ysinO 

ai2 = cos ̂  sin 0 — sin V» sin 7 cos 0 

«13 = sin V* cos 7 

«21 ~ — cos 7 sin 6 

022 = cos 7 cos 9 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 
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023 =sîn7 

031 = —8in0cos^ +co80sm7smtf 

032 = —sin^sintf — cos^8in7Costf 

<*33 = coai/fcosq/ 

(4.13) 

(4.14) 

(4.18) 

(4.16) 

Figure 4.2 illustrates the re-oriented detector plane absent the ^ rotation for simplic­

ity. An arbitrarily oriented plane can actually be uniquely described by the first two 

orientation angles, as the t/) rotation is simply a rotation of the measurement plane 

about its normal. This third angle has been introduced, however, to assist in the 

derivation of the rotation and translation properties of the 3-D Radon transform in 

the next section. 

We describe an x-ray line impinging normal to the re oriented detector plane at 

point {to,ro) by the intersection of the two planes 

These are written in terms of the original coordinates (x,y,2) by applying the com 

posite transformation of Eq. (4.7). 

The projection of the prototype ellipsoidal model onto the t-r detector plane 

is computed by solving for the intersection of the x-ray line with the prototypical 

ellipsoidal surface equation given by 

t — 

r = To (4.17) 

(4.18) 

To = aiii + «129 + «132 

to = 031X + «32; + «33». 

(4.19) 

(4.20) 

(4.21) 
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Figure 4.2: Orientation of the detector plane 
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The intersection points are computed by solving Eqs. (4.19), (4.20) and (4.21) simul-

. taneously for ar, y, and z. We may not require the solution of all three coordinates 

because the distance between intersection points can be computed from any one of 

the coordinates as it is the projection of the length onto the coordinate axis. The 

solution in terms of x yields the following quadratic equation: 

X 

where 

P ^13 
«13®32 - fl33«12 

(4.23) 

5 (4.24) 

T 
Q33°ll 

(4.25) 

Q  = J - L - (  Î 1 2 2 1 â  ( 4 . 2 6 )  
°13 I  \oi3<%32 -°33<%12/ \ «IS / J  

R =-L\[ Î12212 (4.27) 
«13 l\«13«32-033«12/ \ «13 V  J  

ai3«32 - a33<*12 
°12°13 

The projection of the x-ray length onto the x-axis is 

dx — ~ ®1 
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(4.28) 

where xi and X2 are the two real solutions of Eq. (4.22). The length of the x-

ray within the prototype ellipsoid, yielding the forward prototype projection model 

(Radon transform) for parallel beam geometry is thus, 

p((„, ro; 4, C7, «. 7, « = I ' .•/teal (4.39) 
[0 imaginary 

Under certain detector plane orientations, the quantity X2 — xi may be very 

small. Under these circumstances, the projection model can be derived in terms of 

y2 ~ yi Z2 — zi' The derivation is very similar to above and yields equations of 

the same form. 

4.1 lYanslational Property of the 3-D Radon transform 

In order to allow the arbitrary location of the ellipsoidal flaw model, the trans­

lation property of the 3-D Radon transform must be derived. We begin by writing 

the general 3-D Radon transform of an object, /(a;, y, z), as 

/

CO roo foo 
-001-oo J-00 ~ (4.30) 

where (Xj — Ng) = 0 defines the path of the x-ray line. Prom before, the x-ray path 

is described by the intersection of the two planes 

to - {a\\x •¥ ai2y •¥ ai^z) = (4.31) 
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- (<*31® + <*32f + «33^) = 0- (4.32) 

Let 

^ l = t o -  (aji® + ai2y + 0132) (4.33) 

and 

«2 = ro - («313 + «32^ + «33^)" (4.34) 

Then 

(4.35) 

8{t - aux - ai2y - «igz - r + 031® + 033^ + a^2'^)dxdydz. 

We now shift the object function by (xo,yo,zo) resulting in 

8{t — aiix — ai2y - «132 - r + 031® + 032%/ + a^^z)dxdydz. 

Letting u = x — Xo, v =sy — yo and w = z — zo, (4.36) becomes 

Comparing r) with r), we arrive at the translation property of the 

3-D Radon transform: 

Translation Property: 

Let P he the Radon transform of an object function, f{x,y,z). Then the Radon 

transform, of a shifted object function, f{x — xo,y — yoi z — ZQ), is 

P^(t ,  r )  =  P(t  - ai ixo - ai2yo - <%i3Zo , r + 031x0 + 032^0 + 033^0) 

(4.36) 

(4.37) 

S(t — aji (« + Xo) — oi2(^ + îfo) — ai3(w + zo) — 

r + 031 (m + Xo) + 032 (^ + I/o) + 033(w + zo))dudvdw. 
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vohere (t,r) are the detector coordinates and a^j are defined by Eqa. (4.8)-(4.16). 

4.2 Rotational Property of the 3-D Radon Transform 

The rotational property of the 3-D Radon transform is derived to allow for the 

arbitrary orientation of an object function. We define the orientation angles of the 

object function, do, 70, and r/fo exactly as the orientation angles of the detector 

plane. The rotation property is derived in a manner similar to the 2-D case by 

writing the unrotated transform in polar coordinates. The rotation of the object can 

then be applied in the transform followed by the substitution of variables, (f) = 9 —do, 

^ = 7 — 70 and 7 = ^ — ^o- This yields the rotation property for the 3-D Radon 

transform. 

Rotation Property: 

Let P(t,r) be the 3-D Radon transform of an object function, f(x,y,z). The Radon 

transform, P^{t,r) of a rotated object function, f^{x,y,z) is 

P {t,r) = P{t,r) \0ss0—Oo,'y—'y—'yoyiJf=ip—tj^o ' 

At this point notice that the angle ^ was required for the detector orientation in 

order to accommodate the rotation of the object function. It was also implicitly 

required in the translation property. It is interesting to point out that a rotation of 

the object is equivalent to an opposite rotation of the detector plane by the same 

amount. 

It is important to consider the order of application of the translation and rotation 

properties as it was in the 2-D case. In most instances we wish to apply the rotation 

property first because the rotation defined is about the coordinate origin. The trans-
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x-ray cone beam 

x-ray point source 

y 

Figure 4.3: Cone-beam x-ray source geometry 

lation property can then be used to translate the re-oriented object to the desired 

location. The translation and rotation properties are applied to the forward proto­

type projection model by replacing <, r, 7 and ^ in Eq. (4.29) by the quantities 

defined in the above properties. 

4.3 Cone-Beam Conversion 

The derivation of the forward projection model so far has assumed a parallel 

beam x-ray source geometry. In this section, we derive the transformation to convert 

this geometry to the cone-beam geometry of a microfocus x-ray source. In a cone-

beam geometry, all x-rays emanate as straight lines from a point as shown in Fig. 

4.3. 
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We define a single x-ray line out of a cone-beam source as a cone-ray. For 

each cone-ray, an alternative detector orientation is computed such that the cone-

ray is normal to the detector. The parallel-beam Radon transform is used with this 

alternative detector orientation to compute the forward projection generated with 

that cone-ray. Consider the cone-ray shown in Fig. 4.4. The reorientation of the 

(<,r) detector plane to the (/,/) plane causes the cone-ray to be normal to it at 

point Vq). The coordinates (fg, Tq) are related to the reorientation angles, a 

and which in turn are related to the original detector coordinates, (<o,ro), and the 

source-detector distance. The detector reorientation angles are given by 

a = tan~^ (4.38) 

C = tan-' I I • (4.39) 

where D is the perpendicular source detector distance and (<o,ro) are the coordinates 

of the original detector position of the cone-ray of interest. We thus have the new 

detector orientation angles for use in the Radon transform. 

9new + « (4.40) 

7ne«; = lold + (4.41) 

The new detector coordinates are given by 

t'o =<oCosC (4.42) 

Note that each cone-ray has its own alternative detector orientation and location for 

use in the parallel-beam Radon transform. 
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Parallel-ray for ( r ', 
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Figure 4.4: Illustration of the conversion to cone-beam geometry 
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Some example projections produced by the model are shown in Fig. 4.5. Each 

projection was generated by an ellipsoid having the parameters (A=4.00, B=2.00, 

C=2.00, 0=1.57, 7=0.00, ^=0.00). The first projection was with the ellipsoid cen­

tered at 30=10.0, yo=10.0, zo=60.0. The other projections were generated by shifting 

the ellipsoid to xo=10.0, yo=20.0 and xo=20.0, yo=20.0. The projection values have 

been scaled linearly to the range 0-255 so that they can be displayed as a gray-scale 

image. Notice the effects of magnification as the ellipsoidal flaw is shifted away from 

the source. 

4.4 3-D Inversion Problem 

The forward projection model for a three-axes ellipsoid with arbitrary location 

and orientation for a cone-beam x-ray source has been derived by applying the 3-D 

rotation and translation properties as well as the cone-beam transformation to the 

forward projection model for the prototype ellipsoid. The goal of 3-D reconstruction 

is to use the projection model along with x-ray measurement data to estimate the 

ellipsoidal model parameters. Originally, it was intended to use the same estimation 

approach taken in the 2-D reconstruction of Chapter 3. This would have involved 

using a nonlinear optimization routine to minimize the squared error between the 

measurements and the projections of some best fit ellipsoidal model. In the 2-D case, 

this was a problem in 5 dimensions which was demonstrated to be solvable when 

enough prior information is known about the flaw. For the 3-D case, the problem 

has 9 dimensions and is considerably more complicated geometrically. From a nu­

merical standpoint, the linearization associated with nonlinear optimization methods 

is complicated by the large number of partial derivatives and implicit functions. In 
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Figure 4.5: Example projections produced by the 3-D ellipsoidal model 
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addition, the amount of measurement data required is very large because the mea­

surement space is two dimensional. For a typical flaw, there may be as many as 

10,000 measurement points to cover a flaw area of 100 x 100 pixels. Considering the 

CPU time requirement for each iteration and the number of iterations required for 

the 2-D case, it appeared that the reconstruction time for an iterative solution in the 

3-D case would be unreasonable for practical application. In addition, the task of 

minimizing a function in a nine dimensional space is formidable at best. For these 

reasons it was decided that the 3-D reconstruction would be broken into several sim­

pler 2-D problems. The 3-D forward projection model is still useful in generating the 

test data for simulations, however, it isn't used in the inverse reconstruction method. 

The idea of performing 3-D reconstruction of an ellipsoid by breaking the problem 

into smaller 2-D reconstructions centers around the fact that any slice through an 

ellipsoid forms an ellipse (Gellert et al. 1975). This fact means that the projections 

along any line in the detector plane can be used, with the 2-D forward elliptical 

projection model of Chapter 3 to reconstruct a cross section of an ellipsoid. The 

flaw is thus modeled as a series of elliptical slices rather than an entire ellipse. This 

type of reconstruction is potentially more accurate than ellipsoidal reconstructions 

because a nonellipsoidal flaw might be better modeled by a series of elliptical slices. 

The procedure for reconstructing the elliptical slices is as follows: 

1. Obtain at least two stereographic projections. 

2. Estimate initial values for elliptical parameters in region of slice. 

3. Select slice in the detector plane for reconstruction. 

4. Reconstruct elliptical slice in local coordinate system. 
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5. Convert ellipse locus to global coordinate system. 

6. Display result. 

7. Repeat process for more elliptical slices. 

The slice in the image plane is defined by its intercept with the t axis (x axis if 

<9 = ^ = 0) and its angle with respect to the perpendicular to t. The plane containing 

the slice line and the x-ray source is called the fan-plane. The local coordinate system 

for the fan-plane is defined by the slice line and the line containing the t axis intercept 

that is perpendicular to the slice line. The ellipse is reconstructed by first converting 

the measurement data ordinates to the local coordinate system and then performing 

the 2-D reconstruction as outlined in Chapter 3. Figure 4.6 illustrates a slice in 

the detector plane with its associated fan-plane and local coordinate system 

The locus of points on the ellipse in the local coordinate system are converted to 

the global (<,r,a) coordinate system through two rotational transformations and one 

translational transformation. 

First, the m axis is rotated by /? about the I axis where /? is defined by 

P = tan~^ . (4.44) 

Next, the / axis is rotated by about the m axis. These two rotations align the (l,m) 

plane with the (r,s) plane. The (/,m) coordinate system is then translated by to 

complete the-transformation. The composite rotation transformation is 

3 COS/9 0 sin m 

r -sin/? sin 7 cosi/ cos/d sin)/ / 

— sin cos Tf — sin Tf cos /3 cos j/ 0 
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x-ray source 

Detector Slice 

Detector Plane 

Figure 4.6: Illustration of fan-beam slice and local coordinate system 
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Finally, the t/ coordinate must be translated: 

t  =  t ' -  t i .  (4.46) 

This reconstruction technique has been implemented and applied to simulated 

projection data of an ellipsoid. The set of simulated data was generated using the 

3-D forward projection model defined earlier. A cone-beam projection of an ellipsoid 

having parameters (A = 6.0, B = 12.0, C = 6.0, Oo = 0.0, 70 = 0.0, il>o = 0.0, xo 

= 32.0, yo = 32.0, zo = 32.0 ) is shown in Fig. 4.7. The source-detector distance is 

64.0. Slices in the detector plane were taken along lines having the form 

with L and M taking on the values (100,100), (120,120), (140,140), (160,160). The 

locus of ellipses reconstructed from the four slices after conversion to the global 

coordinate system are shown in Fig. 4.8. They correspond almost exactly to planar 

cuts through the ellipsoidal model used to generate the simulation. In this simulation, 

no noise was added to the measurement data and therefore, no confidence intervals 

were computed. The technique was implemented on noisy data obtained through 

radiography of fabricated test samples in the following chapter. 

(4.47) 
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Figure 4.7: Projection of simulated ellipsoid used in the reconstruction 

Figure 4.8: Display of reconstructed slices 
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5. PRACTICAL ISSUES AND EXPERIMENTAL RESULTS 

5.1 Background 

In this chapter, we discuss some of the practical issues of reconstructing the 

flaw model along with experimental results using fabricated samples. Of primary 

concern to obtaining good experimental results are the detector model and practical 

limitations. 

5.2 Detector Model and the Projection Values 

Thus far, we have assumed that projection values were always available for mea­

surement in performing the reconstruction. The projection model used in this disser­

tation assumes a homogeneous flaw and produces values that are directly proportional 

to the distance the x-ray has traveled through the flaw. We can never directly measure 

this quantity as the detector attempts to measure a quantity related to the incoming 

x-ray intensity. The incoming x-ray intensity is very closely related to the projection 

value or ray-sum. For a homogeneous object, the number of photons arriving at the 

detector is (Kak and Slaney, 1988) 

N = Abe-P*, (5.1) 
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where /i is the material absorption coefficient, x is the length of the x-ray path, and 

No is the number of incident photons. Thus, the projection quantity used in the 

model, X, is given by 

(5.2) 

For the general case of an arbitrary object having a spatial dependent attenuation 

coefficient, fi{x, y), the relationship between incident and detected photons is 

N  =  N o e x p ^ — ^ ^ ^ f i { x , y ) d 3  . (5.3) 

Thus, the ray-sum or Radon transform is 

In practice, what we are really measuring is a homogeneous flaw inside a homo­

geneous material. Thus, the ray-sum will have a contribution due to the flaw as well 

as the matrix material. Presumably we know beforehand the shape and absorption 

characteristics of the matrix material. If we also know the absorption characteristics 

of the flaw, then the projection due to the flaw alone can be computed. Consider 

the rectangular inclusion within a slab of material shown in Fig. 5.1. The number of 

photons at the detector is given by 

Nfi = Noexp-[{xi-X2)fio + X2fii]. (5.5) 

where no is the matrix material absorption coefficient, /X| is the inclusion absorption 

coefficient, is the distance through the material, and zg is the distance through 

the inclusion. 
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x-ray path 

Inclusion Matrix material 

Figure 5.1: Rectangular inclusion within a slab of material 

The distance through the inclusion is thus, 

J (5.6) 

Typically, the number of photons is counted with a scintillation detector that 

is held fixed while the object under test is scanned through the x-ray beam. The 

detector collimates the x-ray beam and thus counts the incoming photons over a very 

small area. By scanning the object through the beam and recording the counts at each 

scan position, an image is built up that effectively yields the x-ray photon intensity 

versus position. The measured photon counts are corrected using an efficiency factor 

of the scintillation detector. The problem with this type of measurement is that it is 

very time consuming because the step size of the object scan must be small to obtain 

adequate spatial resolution. In addition, the counting time at each scan position 
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must be long enough to obtain good counting statistics. 

A faster method for calculating the distance traveled within the flaw uses a 

real-time image intensifying detector with a calibration curve. With this method, a 

calibration is performed using a test sample whose distance profile is known a priori. 

The test sample is radiographed with the intensifying detector to create a calibration 

curve for ray-sum distance versus detector output signal. The calibration is only valid, 

however, for future radiographs of the same material with the same x-ray voltage and 

current settings. Measurements made from an unknown part composed of the same 

material can then be made in terms of equivalent distances through the material. This 

technique has the advantage of being extremely fast and convenient to implement. A 

full 2-D radiograph is obtained in near real-time and is easily transferred directly to 

a computer for calibration, processing or reconstruction. 

This method was implemented with an aluminum calibration wedge for use in 

the model reconstruction of fabricated aluminum flaw samples. A radiograph of the 

wedge was made by aflxing it to the face of the image intensifier and performing 

128 frame averages with an x-ray voltage setting of 58.6 keV. A photograph of the 

radiograph, taken from the screen of a Stellar computer display is shown in Fig. 5.2. 

The wedge thickness varies linearly from 0.25 ± 0.005 inches at the top of the image 

to 0.14 ± 0.005 inches at the point where the horizontal marker protrudes from the 

wedge. Figure 5.3 shows the profile of the wedge between the thickness extremes. 

The vertical axis is the detector output, which is constrained between 0 and 255. 

The detector signal is the digitized output of a television camera that is focused on 

the phosphor plate inside the image intensifier. The television signal is digitized to 8 

bits with a frame grabber video digitizing board inside a PC. The horizontal axis is 
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Figure 5.2: Real-time radiograph of an aluminum calibration wedge 

the aluminum thickness, obtained by interpolating linearly between the two thickness 

extremes. 

In order to obtain quantitative distance measurement from an unknown alu­

minum sample, a calibration curve must be generated from the profile data of Fig. 

5.3. One such curve was generated by fitting a quadratic function to the data using 

ordinary least-squares. Figure 5.4 shows a plot of the profile data along with the 

fitted quadratic function. The function is 

I = 100.8 + 1254.9ar - 5865.2a?2, (5.7) 

where / is the intensifier grey scale output and x is the material thickness in inches. 

The correlation coefficient for the fit is 0.99. The quadratic formula can be used to 

compute equivalent distance values from measured intensifier data using aluminum 
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Figure 5.3: Profile across radiograph of aluminum wedge 

materials and the same x-ray voltage and current settings. 

An exponential fit was not used for several reasons. First, the detector output is 

not proportional to x-ray intensity. Second, there are nonlinearities in the intensity 

response near the upper and lower limits of the dynamic range. In addition, the 

profile shown in Fig. 5.3 has flattened tails near the edges. 

An alternative calibration curve is a linear fit. The best fit line for the profile 

across the wedge using ordinary least squares is 

I = 315.1 - 1019.1a:. (5.8) 

A plot of the fitted line with the measured profile is shown in Fig. 5.5. The correlation 

coefficient in this case is 0.97. This fitted line follows the data well near the middle 

of the profile but tends to deviate more near the edges. 
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Figure 5.4: Profile of aluminum wedge with best fit quadratic function 
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Figure 5.5: Profile of aluminum slice with best fit linear function 
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It is known that the output response of the detector as a function of position is 

not constant. Hence, the apparent nonlinearities at the edges could be explained in 

terms of the spatial response of the detector as well as nonlinearities in the intensity 

response. In any case, the modeling of the detector response for an image intensifier is 

a complete project in itself and we will use the simple calibration method described 

here without further analysis. For this work, it was decided to use the linear fit 

calibration in converting the measured intensities from the image intensifier to ray-

sum distances because the resultant distance profiles tended to follow the actual 

profile of the sample better. When the quadratic calibration function was used, the 

profile tended to square off at the edges, while the linear calibration curve produced 

profiles which resembled the original slice shape better. In addition, the sample was 

located near the center of the detector where the spatial nonlinearities of the detector 

response are small. A plot of a slice through a real-time radiograph of an ellipsoid 

shaped sample is shown in Fig. 5.6. The horizontal axis is the detector position and 

the vertical axis is the detector output signal. 

Plots of the data after being calibrated through Eqs. (5.7) and (5.8) are shown 

in Figs. 5.7 and 5.8, respectively. In these plots, the vertical axis is now the distance 

in inches projected through the aluminum sample. Notice that the linear calibration 

follows the shape of the original slice profile slightly better than the quadratic cal­

ibration. One might argue that the true profile of the sample is squared off at the 

edges, but in this case it is not as the sample is known to be an ellipsoid. 
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Figure 5.6: Slice of real-time radiograph of an aluminum sphere 
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Figure 5.7: Calibrated slice through aluminum sphere (quadratic function) 
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Figure 5.8: Calibrated slice through aluminum sphere (linear function) 
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5.3 Experimental Results - Fabricated Samples 

In this section, results of the application of the methods of Chapters 3 and 4 

to several fabricated aluminum test samples are presented. The test samples include 

two roughly ellipsoidal samples, a cylindrical sample, and a spherical sample. A 

photograph of the collection of samples is shown in Fig. 5.9. One of the ellipsoidal 

samples is closer to a capsule shape while the other is closer to a barrel shape. This 

collection is a fairly wide representation of some of the possible shapes of void-like 

flaws. The radiography of these samples was performed by placing them in free 

space, allowing for the easier computation of the projection distances. Although 

this situation is unrealistic in a true inspection setting, it is useful for validation of 

the modeling method. In addition to the model parameter estimation, stereology 

concepts are employed to estimate the sample volumes. 

5.3.1 Aluminum Ellipsoids 

The three ellipsoidal aluminum samples used here include two ellipsoids of revo­

lution and one spheroid. The ellipsoids of revolution have approximate semi-principal 

axes lengths, A=0.25 ± 0.005 inches and 6=0=0.13 d: 0.005 inches. The spheroid 

has a diameter of 0.25 db 0.005 inches. These values were obtained through caliper 

measurements of the samples. The the two ellipsoids of revolution were fabricated by 

machining the ends of a cylindrical aluminum rod on a lathe until they were approx­

imately ellipsoidal. One of the samples is shaped much like a medicine capsule and 

the other is shaped like a barrel with rounded ends. Thus, the machined samples do 

not represent true ellipsoids and the measured principal axis lengths are simply the 

measured length and width of the samples. 
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Figure 5.9: Photograph of aluminum test samples 

Three radiographs of each sample were produced using the Ridge microfocus 

x-ray machine and the real-time image intensifier. The radiographs of each sample 

were made at one reference position and at two translated positions (horizontally 1.0 

inches and 1.5 inches). The translation was performed by placing the samples atop 

a loop of cellophane tape on an automatic x-y-z positioner. A schematic diagram of 

the experimental setup os shown in Fig. 5.10. Photographs of real-time radiographs 

of each sample at the 1.0 inch translation are shown in Figs. 5.11-5.13. The back­

ground of each radiograph is saturated since the samples were not surrounded by any 

attenuating material. 

The various parameters used in the radiography were 

X — ray voltage = 58.6 keV 
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Figure 5.10: Schematic diagram of experimental setup 
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Figure 5.11: Real-time radiograph of ellipsoid 1 (capsule) 

Figure 5.12: Real-time radiograph of ellipsoid 2 (barrel) 
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Figure 5.13: Real-time radiograph of spheroid 

source to detector distance = 54.0 in ± 0.2 

sample to detector distance = 15.5 in zt 0.2 

coordinate origin on radiograph : x = 92 pixels; y = 187 pixels 

The X direction is horizontal and the y direction is vertical with the 0,0 pixel being 

defined by the upper left hand corner. In each radiograph, three slices were selected 

for model estimation. The slices used in this estimation are defined differently from 

those of Chapter 4. In this case, all of the slices initiate at the coordinate origin 

(92,187) in the image and continue radially to the edge of the image as defined by an 

angle, 6 with respect to the horizontal. The angle, 0 is positive clockwise from the 

horizontal. Thus, three slices of each radiograph were taken at the following angles: 

ellipsoid 1:0 = 0.14, 0.20, 0.27 radians 

ellipsoid 2:6! = 0.11, 0.18, 0.27 radians 
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spheroid : 0 = 0.16, 0.23, 0.29 radians 

The slices of the various samples are shown in Figs. 5.14-5.16. The horizontal axis 

is the detector position and the vertical axis is the digitized intensifier output. Each 

figure shows the three slices through the sample at the specified angles plotted to­

gether. The detector position has been calibrated to inches, measured on a line to 

the coordinate origin. 

Notice how the skewness, width and intensity of the various slices changes as 

the slicing angle changes. The corresponding slices of projected distance through the 

aluminum versus detector position using the linear calibration curve of Eq. (5.8) are 

shown in Figs. 5.17-5.19. The slice data are now in the appropriate format for use 

as measurement data in the estimation procedure of Chapters 3 and 4. 

In applying the estimation procedure of Chapter 3, the zero data on either side 

of the projection in each slice was removed and initial values were estimated for 

the elliptical parameters. The initial values were estimated using the stereographic 

reconstruction method of Chapter 2. In particular, initial values for the locations were 

estimated by reconstructing the location of the approximate centroid of the ellipsoid 

1 sample. The two images used for the location computation were the reference image 

and the image with a 1.0 inch sample shift. Using the approximate centroids in the 

left and right images as feature points yielded a z-coordinate of approximately 15.7 

inches and a radial offset of approximately 0.8 inches. The radial offset is defined as 

the distance along the slice line from the coordinate origin. The z-coordinate value 

is used as yo and the radial offset is used as Xo in the 2-D reconstruction scheme. 

The approximate magnification is thus, m = D/(D — yo) = 54.0/38.3 = 1.4. 

The magnification was then used to estimate the elliptical semi-principal axis length, 
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Figure 5.15: Slices of real-time radiograph of aluminum ellipsoid 2 
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Figure 5.16: Slices of real-time radiograph of aluminum spheroid 
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Figure 5.17: Calibrated slice data from radiograph of ellipsoid 1 
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Figure 5.18: Calibrated slice data from radiograph of ellipsoid 2 
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Figure 5.19: Calibrated slice data from radiograph of spheroid 
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a, as 

g « 0.5 ( = 0.18 inche.. (5.9) 

The extent of the projection in the image was obtained from the slice through the 

capsule sample at ^ = 0.20 radians The semi-principal axis length, b was estimated 

roughly as one half the maximum thickness of the sample. For the ellipsoid 1 sample 

with slice angle, 0=0.20 radians, this was approximately 0.12 inches. The initial value 

for the ellipse orientation was selected to be 0.0 radians arbitrarily. 

This initial value estimation procedure was only applied once for the set of 

samples and slices since we do not require extremely accurate starting values in the 

estimation process. In the case of the aluminum sphere, however, the initial estimate 

of a was reduced by one half to reflect the decrease in the extent of the projection. 

The Marquardt estimation procedure described in Chapter 3 was applied to 

three slices through each sample. The estimation summary is shown below for each 

reconstruction. All units of all lengths are inches and the units of angles are radians. 

Ellipsoid 1 : 

Slice 9 = 0.14 : a = 0.17 b = 0.11 xo = 1.12 y© = 16.3 6 = 0.00 = 2.1 

Slice 0 = 0.20 : a = 0.28 b = 0.10 Xq = 1.11 y© = 16.0 0 = 0.00 = 2-9 

Slice 0 = 0.27 : a = 0.19 b = 0.11 Xo = 1.10 yo = 15.4 0 = 0.40 = 2.3 

Ellipsoid 2 : 

Slice 0 = 0.11: a = 0.23 b = 0.11 xq = 1.13 yo = 15.8 0 =-0.92 = 2.4 
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Slice 0 = 0.18 : a = 0.30 b — 0.12 Xo = 1.10 yo = 16.3 6 = —0.69 = 4.2 

Slice 9 = 0.27 : a = 0.27 b = 0.11 x© = 1.14 yo = 16.1 Û = 0.77 = 2.8 

Spheroid : 

Slice 0 = 0.16 : a = 0.11 b = 0.07 Xo = 1.12 yo = 16.1 ^ = 1.60 = 0.58 

Slice Û = 0.23 : a = 0.14 b = 0.10 xo = 1.12 yo = 16.3 Û = 1.92 = 1.00 

Sliced = 0.29: a = 0.13 b = 0.10 x© = 1.11 yo = 16.5 0=1.72 = 1-20 

Error bounds are not given on the reconstructed values because of the unknown 

systematic error of the model fit. 

The number of iterations used in the estimation was quite small ranging from 15 

to 30. The number of measurement points in the slices ranged from approximately 

40 to 80. 

The results of the reconstruction appear reasonable. The estimated values are 

difficult to compare to the true values because of the non-ideal samples. The trends, 

however are correct in that the middle slice exhibits the largest value for a, and 

the yo values are close to the measured value (15.5 ± 0.2 inches). In selecting the 

slice angles, the middle angle was chosen to cover roughly the largest extent of the 

projection. The outer two angles were selected to slice across more of the edge of the 

sample. The spherical sample data shows the best model fit as indicated by the lower 

values of This is to be expected since the sample was almost perfectly spherical, 

and a sphere is a special case of an ellipsoid. 

Plots comparing the fitted model to the measured projection data for the center 

slice of the three samples are shown in Figs. 5.20-5.22. In each case, the solid 
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line represents the measured projection data after calibration and the dashed line 

represents the projection of the fitted ellipse. Notice that the fit is fairly good in all 

cases although not perfect. 

Much of the error between the fit and measurements is due to modeling error as 

opposed to measurement error. In this case, the modeling error is primarily caused 

by the non-ideal nature of the ellipsoidal samples as well as the error in calibration 

of the detector signal. For this reason, the Monte-Carlo method for determining 

confidence intervals on the parameters is of limited value. The Monte-Carlo method 

can show, however, that the model does not fit the data. Once this is known, con­

fidence intervals obtained from the distribution of the estimated parameters are not 

meaningful. The distributions of the estimated parameters can be useful, however, in 

gaining knowledge of how sensitive the estimation is to random measurement noise. 

Although the model does not technically fit the measurement data, it is still 

useful as an equivalent measure of the process. We can observe from Figs. 5.19-

5.21 that the model does fit reasonably well The term reasonably well is difficult to 

define since it is very qualitative. We see that the fit basically follows the trend of 

the measurements with no catastrophic deviations. It is difficult, however, to define 

quantitatively how well the model fits the data in any absolute sense. Comparing 

the nominal value obtained from the initial estimation to the distribution of 

generated from Monte-Carlo simulation will show it to be on the tail of the distribu­

tion. The question isf, how far out on the tail must x^ be before we reject the model? 

One answer to this question is to develop an independent measure of ellipsoidalness 

from the measurement data. A possible measure of this is to model the boundary of 

the projection as a elliptical chain code (Basart 1990). A chain code is a code which 
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Figure 5.20: Comparison of model fit with measurements for ellipsoid 1 
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Figure 6.21: Comparison of model fit with measurements for ellipsoid 2 
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Figure 5.22: Comparison of model fit with measurements for spheroid 
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defines the direction of travel around some feature (Ballard and Brown 1982). The 

ideal elliptical chain code could then be compared with the chain code for the bound­

ary of the measurements yielding some measure of model goodness. Another possible 

measure is to generate a distribution of values for a wide set of measurement data 

whose variability comes from shape alterations (triangles, rectangles, parabolas, etc.) 

rather than measurement noise. A threshold of could be set which would define 

the limit of acceptability for the model. Another approach is to simply observe the 

model fit and make a qualitative judgement as to its acceptability. 

A Monte Carlo simulation was performed using the reconstruction of the center 

slice of ellipsoid 1. Measurement simulations for 204 realizations of the parameters 

(a= 0.28 6=0.09 xo=l.l 2/o=16.0 0 = 0.0). The realizations were made by using the 

noiseless projection data from the above parameters in the Poisson process defined 

by Eq. (3.54). In this simulation, the mean was the current projection value, and 

the value of A was selected to be 0.002 by comparison of the measured noise level to 

the noise level produced by the simulation. The Poisson process was used because it 

has been shown that the noise of the x-ray generation combined with the noise due 

to the photon interaction with matter obeys a Poisson distribution (Macovski 1983). 

There is also a correlated noise process associated with the image intensifier detector 

which was not modeled. The distribution of from the simulations is shown in Fig. 

5.23. Notice that the value of (2.91), is out on the tail of the distribution. In fact, 

it does not even appear to be part of the distribution. 

This indicates that the modeling error is not explainable in terms of measure­

ment error alone. In this case we accept the model anyway because the fit looks 

qualitatively reasonable. In addition, the value 2.91 is not all that far from the dis-
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Figure 5.23: Distribution of generated by Monte-Carlo simulation 

tribution. If the value of turned out to be 206.2, we would be tempted to question 

the model more. As stated earlier, the Monte-Carlo simulation used to generate the 

distributions of the estimated parameters is useful in determining how sensitive the 

model is to random fluctuations in the measurement process. In particular, for a typ­

ical photon counting noise process, we may wish to know the effect of signal-to- noise 

ratio on the estimation. It is useful to see if a parameter might change by 100% or 

more simply because of sensitivity of the model to a small measurement fluctuation. 

The distributions of the estimated parameters presented in the form of scatter 

plots are shown in Figs. 5.24-5.28. The horizontal axis of each plot is the value of 

and the vertical axis is the appropriate parameter. 

Notice that in each distribution, the parameter values are scattered fairly nar-
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Figure 5.24: Scatter plot of a vs. for 204 sample realizations 

rowly around the nominal values. The distribution of yo varies from approximately 

15.8 to 16.4 inches. Thus the variability in the estimated y location of the elliptical 

slice due to measurement variability alone is about 0.6 inches. In some cases, this 

variability is acceptable, in other cases, it is not. If we are searching for locations 

of 0.05 inch diameter flaws inside a slab of material having a thickness of 1 inch the 

result would clearly be unacceptable. The variability can be reduced by reducing the 

source-to-detector distance. A 0.6 inch variability in a 54 inch source-to- detector 

distance is about 1%, which is actually very good. The best approach is to keep the 

source-detector distance as small as possible to keep the absolute variability of the 

estimated parameters as small as possible. 

The distribution of the parameters a and b vary from approximately 0.22 in. 
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Figure 5.25: Scatter plot of h vs. for 204 sample realizations 

to 0.32 in. and 0.08 in. to 0.12 in., respectively. These variabilities appear to be 

reasonable given that the true values are approximately 0.25 in. and 0.13 in. In 

all cases except for 6, the estimated parameters from the measurement data fall 

well within the distributions of the corresponding parameters in the Monte-Carlo 

simulation. Although the calculated value of h does not fall within the distribution, 

it is very close and the variability is small enough to deem the result acceptable. This 

is extremely encouraging, given the fact that the value does not fall within its 

distribution. The distribution of 0 is bi-modal due to the fact that all values between 

Tr/2 and tt are not computed as negative angles. If we subtract ir from all angles in 

the upper cluster of points, the distribution will be uni-modal about zero. 

It would be useful to display the resulting elliptical slice reconstructions in a 
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Figure 5.26: Scatter plot of Xq vs. for 204 sample realizations 

form similar to that of the simulated reconstructions at the end of Chapter 4. Unfor­

tunately, this is not possible to perform in the scale of the measurement coordinate 

system. The method of display in Chapter 4 required a 3-D discrete grid of intensities 

in which the brightness at each grid location was controlled by a number in an array. 

The relatively large range of possible locations in the source detector direction (54 

inches) does not allow for adequate spatial resolution to display flaw structures on 

the order of 0.1 inch without an extremely large array size. At present, the 3-D array 

size is limited to 128x128x128 for display in this manner. In the future, however, 

a rendering program could be used to render an equivalent ellipse or ellipsoid as an 

approximate polygon and could display the result in any coordinate system. 

An alternative measure of flaw shape and volume is to make an assumption as to 
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Figure 5.27: Scatter plot of yo vs. for 204 sample realizations 

its shape and estimate the shape parameters which will define some three-dimensional 

quality, such as volume, from the spatial features of the projection. This is the basic 

idea of stereology. In stereology, however, there is the assumption of a distribution 

of objects to be quantified. This distribution tends to make the errors cancel out 

when dealing with the estimation of quantities such as total volume occupied by 

a distribution of objects. In our case, we do not have such a distribution. We 

simply must make an assumption, estimate the measurement errors and attempt to 

relate this to the error in the estimated quantity. For the objects under test in this 

chapter, it is reasonable to make assumptions that the object is ellipsoidal. We can 

estimate the semi-principal axes lengths from measurements of the lengths across 

the projection and the magnification. We can then estimate the volume by either 
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Figure 5.28: Scatter plot of 9 vs. for 204 sample realizations 

assuming an ellipsoid of revolution or using the detector intensity to determine a third 

principal axis length. If we assume an ellipsoid of revolution, the volume estimation 

requires only spatial measurements of two principal axes lengths from the projection. 

However, this assumption is more susceptible to modeling errors since we may be 

viewing a three axis ellipsoid. Thus, if calibrated distance measurements for the 

projections are available, it is advantageous to use these measurements to estimate 

the third principal axis. Modeling errors can also occur due to the orientation of 

the object under test. If an ellipsoid has nonzero orientation with respect to the 

measurement system coordinate axes, the projected principal axes lengths will appear 

foreshortened. This foreshortening will cause an error to occur in the principal axes 

and volume computations. However, the use of the calibrated projection distance 
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measurements from the detector signal can help reduce this error by bringing in 

information about the thickness of the ellipsoid. 

This type of modeling and volume analysis has been performed on each of the 

three samples discussed earlier. The magnified principal axes lengths were measured 

in the images by observing the pixel locations of the leftmost, rightmost, upper­

most, and lowermost points of the projected samples. The centroids of the features 

were defined by the midpoint between these four extremes. The coordinates of the 

centroids in the images were converted to absolute distance measurements on the 

detector plane using the using the distance calibration factors given by 

kx = 0.0081 inches per pixel 

ky = 0.0068 inches per pixel. 

These factors were obtained from the calibration disk discussed in Chapter 2. Next, 

the locations of the sample were estimated using the centroid coordinates in the 

images and the total least squares estimator of Chapter 2. The estimated locations 

in terms of distance from the detector were 

Ellipsoid 1 : d = 15.3 in. ± 0.8 

Ellipsoid 2 : d = 15.0 in. ± 0.8 

Spheroid : d = 15.3 in. ± 0.8 

The corresponding estimated magnifications of each sample using Eq. (1.1) were 

'"ellipsoid 1 ~ ^ 0.06 

'"ellipsoid 2 ~ ±0.06 

'"spheroid ~ ^ 0.06. 
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The lengths and widths across each projection for the various samples were 

Ellipsoid 1 : 

X : 83 pixels ±2 = 0.676 in ±0.016 

y : 47 pixels ±2 = 0.319 in db0.014 

Ellipsoid 2 : 

X : 85 pixels ±2 ss 0.693 in ± 0.016 

y : 58 pixels ±2 = 0.394 in ± 0.014 

Spheroid : 

X : 43 pixels ±2 = 0.350 in i 0.016 

y : 52 pixels ± 2 = 0.353 in db 0.014 

The estimated principal axes lengths for each case after correction for magnification, 

using 

axis length = length (5.10) 

was thus, 

Ellipsoid 1 : ^ = 0.24 in ± 0.03 5 = 0.12 in ± 0.02 

Ellipsoid 2 : A = 0.25 in ± 0.04 B = 0.14 in ± 0.02 

Spheroid : A = 0.13 in ± 0.02 B = 0.13 in ± 0.02, 

where A and B are the horizontal and vertical semi-principal axes lengths, respec­

tively. The uncertainties in each case were computed by determining upper and lower 

bounds for the computed quantities from the upper and lower bounds on the quan­

tities used in the formulas. Estimates of the third semi-principal axis length along 
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the x-ray line of sight were obtained from the calibration function of Eq. (5.8). The 

grey scale detector output at the centroid locations for each sample were 

Ellipsoid 1 : Detector output at (109,227) = 75 

Ellipsoid 2 : Detector output at (125,227) = 23 

Spheroid : Detector output at (114,234) = 31, 

yielding estimates of 

Ellipsoid 1 : C = 0.12 in ± 0.01 

Ellipsoid 2 : C = 0.15 in ± 0.01 

Spheroid : C = 0.14 in ±0.01. 

The uncertainties on C were computed from the local standard deviation of detector 

signal near the centroid. In each case, the local standard deviation was approximately 

three. The errors caused by calibration have been ignored here. 

The volume of the ellipsoidal model can now be computed as (Beyer 1981) 

V = ^irABC (5.11) 

Computing the volumes from the semi-principal axes estimates above yields 

Ellipsoid 1 : V = 0.0145 in^ ± 0.0061 

Ellipsoid 2: V = 0.0213 in^ ±0.0097 

Spheroid : V = 0.0099 in^ ±0.0042. 

The true volumes of each sample are 

Ellipsoid 1 : Vtrue = 0.0191 in® ± 0.0001 
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Ellipsoid 2 : = 0.0258 in^ ± 0.0002 

Spheroid : V^rue = ±0.0001. 

The true volumes were measured by weighing them with a precision scale and using 

the density of aluminum. The density value used for aluminum was 2.70 g/cm^ ±0.01 

The scale was accurate to ± 0.0002 g. Thus, the uncertainty on the measurements 

was practically zero compared to the uncertainty on the estimates. The measured 

masses of the samples were 

Ellipsoid 1 : m = 0.8460 g ± 0.0002 

Ellipsoid 2 : m = 1.1443 g ± 0.0002 

Spheriod : m = 0.3747 g ± 0.0002. 

Notice that the computed volumes are fairly close to the true volumes (within the 

predicted uncertainties). In an actual inspection setting, the volume measurement 

is usually not as useful as the separate axes measurements for an ellipsoidal model. 

Typically, the criterion for maximum allowable flaw size in a part is specified in terms 

of a length, diameter or thickness. 

5.3.2 Aluminum Cylinder 

The analysis procedures of the previous section were implemented identically 

on an aluminum cylindrical sample. The purpose of the cylindrical sample was to 

test the procedures on a sample that was not as close to being ellipsoidal. The 

cylinder had a diameter of 0.25 ±0.005 inches and a length of 0.25 ±0.005 inches. 

Three radiographs of the cylinder were produced under identical circumstances as 
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Figure 5.29: Real-time radiograph of aluminum cylindrical sample 

the ellipsoidal samples. A photograph of the real-time radiograph of the cylindrical 

sample at a shift of 1.0 inch is shown in Fig. 5.29. Again, the background is saturated 

because the sample has been placed in free space with no surrounding attenuating 

material. 

Plots of three slices through the radiograph at angles 0.18, 0.23 and 0.30 radians 

are shown in Fig. 5.30. In this figure, the vertical axis is the detector output signal 

and the horizontal axis is the detector position. Notice the skewed nature of the slices 

caused by the discontinuity of the cylinder at its ends. The corresponding slices after 

calibration using Eq. (5.8) are shown in Fig. 5.31. 

These slices were used in the elliptical model estimation routine as described in 

the previous section yielding the following results. 

Sliced = 0.18 a = 0.12 b = 0.11 Xo = 1.1 yo = 15.9 do = 3.30 = 2.3 

Sliced = 0.23 a = 0.12 b = 0.13 Xo = 1.1 yo = 16.2 do = 1.07 = 2.7 
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Figure 5.30: Slices through real-time radiograph of aluminum cylindrical sample 
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Figure 5.31: Calibrated slices through aluminum cylindrical sample 
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Slice 6 = 0.30 a = 0.15 b = 0.10 xo = 1.1 yo = 16.4 Oq = 0.88 — 2.6 

(Note: Length units are inches and angle units are radians.) Initial values were 

obtained in the same manner described above. Again, the results are reasonable, 

with the fitted principal axes being near the true value of the radius of the cylinder 

(0.125 in). The location, parameter, yo has overestimated the true value (15.5 in) in 

each case, however, this could be attributed to modeling error and calibration error. 

A plot of the fit for the slice, ^=0.23 is shown in Fig. 5.31. Notice that the fitted 

projection does not follow the measurement data as well as the previous samples. For 

this situation, it is useful to obtain estimates directly from the shape of the projection 

and the estimated magnification. 

The measured length and breadth of the projection of the cylinder are 

length = 44 pixels ±2 = 0.359 in ± 0.016 

breadth = 47 pixels ±2 = 0.319 in db 0.014. 

The estimated distance from the detector, using stereographic reconstruction of 

the approximate centroid is 

yo = 15.3 in ± 0.8, 

yielding an estimated magnification of 

m = 1.41 ±0.04. 

Correcting the length and breadth estimations for the magnification yields 

Sample length = 0.26 in ± 0.02 

Sample breadth = 0.23 in ± 0.02 
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Figure 5.32: Fit of elliptical model to cylindrical slice data 
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The grey-scale detector signal at the sample centroid was 76, yielding a thickness 

estimate of 0.23 inches ± 0.01. Again, this estimate was obtained from the calibra­

tion formula of Eq. (5.8). The uncertainty was computed from the local standard 

deviation of the detector signal near the centroid. 

These estimates compare well with the true values. We can use them in a volume 

computation for an equivalent ellipsoid or cylinder. The equivalent ellipsoidal volume 

is given by 

= ^TT • length r breadth • thickness, (5.12) 

yielding the result, Vc = 0.0072 in^ ±0.001. The equivalent cylindrical volume is 

given by 

Vc = J • breadth^ • length, (5.13) 

yielding the result, Vc = 0.011 in^ ±0.003. The measured volume of the cylindrical 

sample was 0.0125 in^ ± 0.0001. Notice that the computed cylindrical volume is 

much closer to the true volume (12%error as opposed to 42%). 

In the next section, we discuss the various trade-offs and limitations associated 

with the elliptical slice modeling and the stereology-based modeling methods. 

5.4 Practical Limitations and Discussion 

There are many practical limitations associated with the modeling and estima­

tion procedures used in this chapter. Among these limitations include the detector 

calibration accuracy, measurement accuracy, orientation dependency of the projec­

tions, and estimation time. 

The detector intensity calibration is extremely important to obtaining good es­

timation results from the elliptical slice model. The calibration process converts the 
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actual detector signal into x-ray projection distances. These distances are used for 

the measurement data in the estimation procedure for modeling the data as elliptical 

slices. The integrity of this data strongly affects the result of the estimation. In the 

test cases used in this dissertation, the calibration was relatively easy to perform as 

the sample was in free space with no surrounding material. When there is surround­

ing material, an assumption must be made about the flaw material composition. This 

type of calibration also assumes that there are no occluding flaws. In cases where 

there are occluding flaws, the orientation of the sample must be changed. It would be 

useful in future research to study the image formation process of the real-time image 

intensifying detector in order to develop better models for use in the calibration. 

Measurement accuracy is of prime importance to obtaining accurate results in 

both the elliptical slice estimation and the stereological modeling. In particular, the 

accuracy of measurements of the feature coordinates and distances on the detector 

have the largest effect on the accuracy of the results. This measurement accuracy 

becomes even more important when the source-detector separation distance is large. 

For this reason, great care and precision must be used while performing the radiogra­

phy so that the propagation of measurement errors does not dominate the quantities 

being estimated. A key to determining the practical limitations caused by measure­

ment inaccuracies is to use Eqs. (2.40) and (2.43)-(2.47) for the particular inspection 

geometry, thus determining how the errors propagate through to the estimates. 

The dependency of the projected sample on its orientation create a limitation 

in terms of both modeling and detectability. In theory, the elliptical slice modeling 

procedure can account for a wide variety of ellipsoidal shapes of diflerent orientations. 

A situation can occur, however where the ellipsoidal thickness along the direction of 
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the x-ray path is not sufficient to generate a detectable signal. In other cases, the 

orientation may be such that the dynamic range of the detector is exceeded. A 

possible solution to this problem is to re-orient or shift the sample such that the 

detector signal is acceptable. When estimating the ellipsoidal parameters from the 

shape measurements and magnification, as in the stereological modeling, it is wise 

to make at least two projections (which are required anyway) to see if any dramatic 

foreshortening of the flaw axes is taking place. 

Finally, one of the limitations associated with estimating model parameters is 

time. This is also one of the trade-offs between the elliptical slice model estimation 

and the stereological modeling. Performing the elliptical slice estimation requires 

that a series of calibrated slices be extracted from the digitized radiograph followed 

by an iterative estimation process for each slice. This method can be time consum­

ing compared to stereological modeling. The information gained, however is more 

detailed and is potentially more accurate. The question is, does the increase in in­

formation and potential accuracy justify the time and expense? This is a difficult 

question to answer and is addressed in the following chapter. 
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6. SUMMARY AND CONCLUSIONS 

The goal of this dissertation has been to develop and implement techniques to 

determine size and location information about flaws from x-ray inspection with a 

small number of views. The motivation behind this goal has been to overcome limits 

of inspectability when the geometry of the inspection is such that data collection 

from many angles is impossible or impractical. In addition, the reduction in cost and 

time associated with acquiring and processing a fewer number of projections has been 

another motivation. To this end, techniques have been developed which reconstruct 

or estimate a model of the flaw rather than reconstruct the actual flaw. 

The types of flaws under consideration in this dissertation have been crack-like 

flaws, or flaws which have a wandering or meandering nature with easily identifiable 

characteristic points, and volumetric flaws, which have relatively smooth boundaries 

and have an anomalous absence or presence of material. The philosophy behind 

the reconstruction of these types of flaws has been to model them by a geometric 

shape and derive equations which produce the x-ray projection of the model. These 

equations are then used with measured projection data to estimate best-flt model 

parameters. 

In the case of crack-like flaws, the geometric model has been a discrete point 

or a series of points that when connected, yield a piecewise linear curve. This type 
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of model is justified because a crack is generally viewed as an extremely localized 

feature that tends to wander around. When stereographic projections are made, it 

is easier to identify corresponding points between the two images. These (and other) 

corresponding points are used with a linear model of the stereo point projecting 

process to estimate the 3-D locations of the points. The locations of the points are 

estimated using a least-squares or total least-squares estimator. The linear model is 

formulated in such a way as to allow the use of more than two projections and to 

allow the estimation of as many points as desired. The projection model has also 

been used to derive expressions relating the errors in the estimated parameters to 

the measurement errors. These equations are extremely useful in giving the NDE 

practitioner confidence in his/her results. 

The estimation procedure has been applied to several inspection scenarios rang­

ing from fabricated test samples in the laboratory to industrial railroad frogs in the 

field. The results of the procedure on the laboratory samples have been encouraging 

with the results being correct within the bounds of experimental error. The results in 

the case of the railroad frogs are still inconclusive. At this time, new radiographs of a 

frog after failure have been produced. Destructive sectioning is planned to compare 

the true flaw locations to the estimated locations. This correlation will provide a 

more conclusive answer as to the applicability of this technique to situations in the 

field. The success of the procedure as it is applied to laboratory samples indicates 

that a positive correlation is likely. 

In the case of volumetric flaws, two modeling approaches have been used. The 

flrst approach models the flaw as an ellipsoid having arbitrary principal axes lengths, 

orientation angles and location. Slices of the ellipsoid (ellipses) are reconstructed 
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from measured projection data along straight lines in the detector plane. Originally, 

it was intended that a full 3-D ellipsoid would be reconstructed from the full set 

of data in the measurement plane. This turned out to be an extremely difficult 

prospect, therefore, the problem was broken into several, simpler 2-D elliptical slice 

reconstructions. Instead of an optimization problem in 9 dimensions, the problem 

was reduced to a series of optimization problems in 5 dimensions. 

The second approach to modeling volumetric flaws has been to use concepts 

from stereology in which the flaw is modeled as a geometric solid such as an ellipsoid, 

cylinder, cone, etc. The model parameters are then estimated from the shape of 

the projections. This type of modeling is more susceptible to orientation dependent 

errors since it does not necessarily use the thickness information along the line of sight 

of the x-ray. However, when one uses the thickness information, the model can be 

adjusted to reflect the true shape. For instance, if one originally assumes an ellipsoid 

of revolution (A^B=C) for the model of a flaw, and discovers that the thickness (2C) 

of the ellipsoid is not equal to 2B, then the ellipsoid model can be changed to a three-

axes ellipsoid, resulting in a much more accurate description. The use of stereology 

modeling also makes the error analysis easier. All of the model parameters must be 

corrected for magnification, which is determined from the stereographic projection 

methods of Chapter 2. The error analysis procedures developed there can be directly 

carried over to determining approximate error bounds for the model parameters. It 

is difficult, however to determine the modeling error. Much work has been done 

previously in generating modeling error bounds when the error is caused by the 

mismodeling of known figures by other known figures (Russ 1986). Related work 

has generated error bounds for various models caused by mismodeling as a result of 
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orientation errors. 

Both modeling nlethods have been implemented and applied to several fabricated 

aluminum test samples. The results of the reconstruction of 3 slices through each 

sample has yielded results which are acceptably close to the true values. We define 

acceptable here as within 5% of the true location (with respect to the source-detector 

separation distance) and within 20% of the true model shape parameters. It is difficult 

to measure the true parameter values because the samples are very small, and the 

samples are not ideal in terms of the model anyway. The 9 parameter is especially 

difficult to interpret because the two semi-principal axes lengths are nearly equal in 

most cases. Bounds on the estimation error due to random measurement fluctuations 

(Poisson noise) have been determined for one case through a Monte-Carlo simulation. 

The main problem with this type of error analysis is that it does not take into 

account the modeling error, and it is extremely laborious to implement for each 

reconstruction. We cannot say that a certain parameter has a certain confidence 

interval, because the model that parameter is a part of, may not fit the data at 

all. Still, the parameter distributions are useful in determining the sensitivity of the 

estimation to small fluctuations in the measurements. 

The stereolgy-based modeling methods have also been implemented on the test 

samples with very good results. In particular, the shape parameters for the ellipsoid 

and cylinder models are very close to the measured values (within estimated uncer­

tainties). Although the samples were radiographed with no foreshortening of the 

axes, this method appears extremely attractive for describing flaw characteristics. 

The trade-offs between the two volumetric flaw modeling methods are speed and 

information. The elliptical slice modeling method provides more detailed information 
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in terms of the best-fit elliptical parameters through some slice of a flaw. If a large 

number of slices is used, the entire flaw can be covered and a composite shape can be 

rendered. The problem with this approach is that it takes time. It is questionable if 

the typical NDE practitioner can utilize all of this information. On the other hand, 

scientists in the field may eventually require more and more detailed information 

about a flaw when GT techniques are not possible. The composite method can 

potentially serve this need. The question of model accuracy also plays a key role in 

determining the method's applicability to real inspection data. Some threshold of 

model goodness should be invented to specify when to throw out the model. It seems 

at this point that the method gives you more information than you need to know. 

Most practitioners don't care how well the flaw data fits an ellipsoid as long as they 

know approximately where the flaw is and how big it is. Given these statements, 

the stereology method appears to be very attractive for computing the important 

flaw measures while avoiding complexities associated with nonlinear optimization 

and detector calibration. 

The elliptical slice modeling method should still be pursued as a research tool 

that can continue to be refined as more and more quantitative information is required 

from the inspection. There are many areas of research that must be investigated to 

continue this refinement. Of particular importance is a study of the real-time detector 

model. Because the real-time detector is the most attractive means of acquiring 

an image quickly, its use should be incorporated in this work. Another area that 

should be investigated is the inspection of complicated part geometries. Joe Gray, 

and others (Gray and Inane 1989) have developed an x-ray simulation program that 

models the x-ray generation process, the x-ray interaction with a complicated part 
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geometry, and the image formation process. This type of software could be used to 

allow the ellipsoidal model to be embedded in some complicated part. Finally, it 

would be useful to attempt the use of a 3-D ellipsoidal model with a fewer number 

of parameters. Reduction of the number of allowed orientation angles and principal 

axes lengths may allow the nonlinear optimization process to be practical for the full 

3-D shape. 
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